Laboratory Underground Nuclear Astrophysics

Recent results and status of the ${}^{14}N(p,\gamma){}^{15}O$ measurement at LUNA

Heide Costantini Dipartimento di Fisica and INFN, Genova (Italy)

Laboratory for Underground Nuclear Astrophysics

Gran Sasso National Laboratory (LNGS) <u>Cosmic background reduction</u>: μ: 10⁻⁶ n: 10⁻³

400 kV accelerator

in progress...

SPECIFICATIONS ✓ U_{max}= 50 - 400 kV ✓ I ~ 500 µA for protons ✓ DE_{max}= 0.07 keV • Energy spread : 72eV • Total uncertainty is ±300 eV between Ep=100 ÷ 400keV

Present and future activity:

- [∞] ¹⁴N(p,γ)¹⁵O
- ⁴He(³He, γ)⁷Be
- [∞] ²⁵Mg(p, γ)²⁶Al

$^{14}N(p,\gamma)^{15}O$ and solar neutrinos

The rate of the CNO cycle is governed by the slowest reaction ${}^{14}N(p,\gamma){}^{15}O$ (Q=7.3 MeV)

¹³N and ¹⁵O neutrinos have fluxes and energy spectra comparable with those coming from ⁷Be (pp chain)

Globular Clusters and ${}^{14}N(p,\gamma){}^{15}O$ reaction rate

¹⁴N(p,γ)¹⁵O

 $R/DC \to 0 \begin{cases} S(0) = 1.55 \pm 0.34 \text{ keV-b (Schröder)} \\ S(0) = 0.08 \pm 0.06 \text{ keV-b (Angulo)} \end{cases}$

2 experimental approaches

Experimental setup

Solid Target features

HpGe background

 $E_{\gamma}[keV]$

Beam induced background

The experimental spectrum

Summing effect

278 keV resonance parameters

Resonance strength

present work	literature
(13.5 \pm 0.4 \pm 0.8) meV	(14 \pm 2) meV

Branching ratios at the 278 keV resonance

	present work	literature
R/DC→0	1.7±0.1	3.5 ±0.5
R/DC→6.79	23.3 ±0.3	23.3 ±0.6
R/DC→6.17	58.4 ±0.3	57.4 ±0.6
R/DC→5.18	16.6 ±0.2	17.1 ±0.6

← Hebbard & Bailey (1963)

Close geometry measurements

Angular distribution measurements

Data Analysis (1)

Data Analysis (2)

Ground state results

$R/DC \rightarrow 6.79$ results

Schröder('87)	Angulo ('01)
[<i>kev-b</i>]	[<i>kev-b</i>]
3.2 ± 0.5	1.8 ± 0.2

$$S_0^{tot} = 1.7 \pm 0.1 \text{ keV b}$$

Paper submitted to Phys. Letter B

- GC age increases of 0.7-1 Gyr
- CNO neutrino flux decreases a factor ≈ 2

Gas target set-up

BGO detector

- The section Efficiency ≈ 65 %
- Natural background (6500-8000 keV)

Beam induced background

20 c/day

Data analysis(1)

Data analysis(2)

 $\sigma_{eff}(E_{effcm}) = \frac{N_{\gamma}}{N_{proj}} \frac{v}{kT} \int_{0}^{L} P(z)\eta(z)dz$ Effective cross section Monte Carlo $N_{proj} = \frac{Q_{Beam}}{e}$ $E_{Eff} = E_{Beam} - \int_{0}^{z_{Eff}} \frac{dE}{d(\rho x)} \rho(z) dz$ $\int_{0}^{\tilde{z}} P(z)\eta(z)dz$ Pressure profile along the target

Beam heating effect measurement

The particle beam heats the gas changing the local density.

Movable Lead Shielded NaI detector $(1" \times 1")$

NaI detector

Pressure profile

Cross Section preliminary data

Ebeam = 80 keV

2004/02/29 16.10

ωγ measurement(1)

BGO Resonance Scan at 2 mbar (77 μ A)

2004/02/26 12.25

Pressure	ωγ (meV)
2.0 mbar	13.6 ± 0.8

Solid Target: $13.5 \pm 0.4 \pm 0.8$

Other Works 14 \pm 1

ωγ measurement(1)

BGO Resonance Scan at 2 mbar (77 μ A)

2004/02/26 12.25

Pressure	ωγ (meV)
2.0 mbar	13.6 ± 0.8
1.0 mbar	12.7 ± 0.7
0.5 mbar	11.3 ± 0.6

Solid Target: $13.5 \pm 0.4 \pm 0.8$

Other Works 14 \pm 1

ωγ measurement(2)

Assuming
$$\eta$$
 and ρ as constants

$$Y(E_b, \rho) = \frac{N_d}{Q} = \int_0^L \sigma(E(z))\rho(z)\eta(z)dz \approx \frac{\eta}{\frac{dE}{d(\rho x)}} \int_{E_b}^{E_b - \Delta} \sigma(E)dE$$

Because Amplitude energy dependence is negligible:

ωγ measurement(3)

Future perspectives(1) ${}^{4}\text{He}({}^{3}\text{He},\gamma){}^{7}\text{Be}$

- $\Phi_{\rm B} \text{ depends on nuclear physics and astrophysics inputs} \\ \Phi_{\rm B} = \Phi_{\rm B} (\text{SSM}) \cdot \text{s}_{33}^{-0.43} \text{s}_{34}^{0.84} \text{s}_{17}^{1} \text{s}_{e7}^{-1} \text{s}_{pp}^{-2.7} \\ \cdot \text{ com}^{1.4} \text{ opa}^{2.6} \text{ dif }^{0.34} \text{ lum}^{7.2}$
- These give flux variation with respect to the SSM calculation when the input X is changed by x = X/X^(SSM).
- Can learn astrophysics if nuclear physics is known well enough.
- •Nuclear physics uncertainties, particularly on S₃₄, dominate over the present observational accuracy $\Delta \Phi_{\rm B} / \Phi_{\rm B} = 7\%$.

•The foreseeable accuracy $\Delta \Phi_{\rm B} / \Phi_{\rm B} = 3\%$ could illuminate about solar physics if a significant improvement on S_{34} is obtained

Source	ΔX/X (1σ)	$\Delta \Phi_{\rm B} / \Phi_{\rm B}$ (1 σ)
S33	0.06	0.03
S34	0.09	0.08
S17	0.05 ?	0.05
Se7	0.02	0.02
Spp	0.02	0.05
Com	0.06	0.08
Opa	0.02	0.05
Dif	0.10	0.03
Lum	0.004	0.03

4 He(3 He, γ) 7 Be

Mainly 3 γ -transitions:

✓ $E_{\gamma} = 1585 \text{ keV} + E_{cm} (DC \rightarrow 0);$ ✓ $E_{\gamma} = 1157 \text{ keV} + E_{cm} \text{ and } E_{\gamma} = 429 \text{ keV} (DC \rightarrow 0.429; 0.429 \rightarrow 0)$

Past measurements

Target chamber design (1)

Target chamber design

Expected counting rate

P = 1 mbar; $I = 200 \ \mu A$

counts/day

Future perspectives(2) $^{25}Mg(p,\gamma)^{26}Al$

E _p ^{lab} (keV)	ωγ (eV)	
135.1	<1.4 × 10 ⁻¹⁰	—— E _γ = 6436 keV
112.2	$(3\pm 1) \times 10^{-11}$	
95.8	$(1\pm 0.3) \times 10^{-10}$	
59.7	$(3\pm 1) \times 10^{-13}$	2004/02/19 15.10
38.4	<2.4 × 10 ⁻²⁰	png04-102.hbook 10 7 ID 12 Entries 934725702

Resonance strengths calculated from the ²⁵Mg(³He,d)²⁶Al reaction (Iliadis et al 1996)

Conclusions

- ⁴N(p,γ)¹⁵O has been studied with a solid target set-up down to E_{cm}=135 keV
- Present work improves the experimental information concerning the $R/DC \rightarrow 0$ transition
- ^{The set-up the 14}N(p,γ)¹⁵O total cross-section is presently studied at LUNA down to E_{cm} =70 keV

Future measurements are :
⁴He(³He, γ)⁷Be (gas target)
²⁵Mg(p, γ)²⁶Al (solid target)