SUPERNOVA MODELING VIA KINETIC THEORY

Wolfgang Bauer Michigan State University

Email: bauer@pa.msu.edu

http://www.pa.msu.edu/~bauer/

HYDRO SIMULATIONS

- Tough problem for hydro
 - Length scales vary drastically in time
 - Multiple fluids
 - Strongly time dependent viscosity
 - Very large number of time steps
- Special relativity, causality, ...
- Huge magnetic fields
- 3D simulations needed
 - Giant grids

SIMULATIONS OF NUCLEAR COLLISIONS

- Hydro, mean field, cascades
- Numerical solution of transport theories
 - Need to work in 6d phase space => prohibitively large grids (20³x40²x80~10⁹ lattice sites)
 - Idea: Only follow initially occupied phase space cells in time and represent them by test particles
 - One-body mean-field potentials (ρ , p, τ) via local averaging procedures
 - Test particles scatter with realistic cross sections => (exact) solution of Boltzmann equation (+Pauli, Bose)
 - Very small cross sections via perturbative approach
 - Coupled equations for many species no problem
 - Typically 100-1000 test particles/nucleon

Bertsch et al., Phys. Rev. C, '84

EQUATION TO SOLVE

$$\frac{\partial f_b(xp)}{\partial t} + \frac{\Pi^i}{E_b^*(p)} \nabla_i^x f_b(xp) - \frac{\Pi^\mu}{E_b^*(p)} \nabla_i^x U_\mu(x) \nabla_p^i f_b(xp) + \frac{M_b^*}{E_b^*(p)} \nabla_i^x U_s \nabla_p^i f_b(xp) \\
= I_{bb}^b(xp)$$

$$I_{bb}^{b}(xp) = \frac{\pi}{(2\pi)^{9}} \sum_{\alpha_{1}\alpha_{2}\alpha_{3}, m_{s}^{b}} \int \int \int d\mathbf{p}_{1} d\mathbf{p}_{2} d\mathbf{p}_{3} \frac{M_{b}^{*} M_{\alpha_{1}}^{*} M_{\alpha_{2}}^{*} M_{\alpha_{3}}^{*}}{E_{b}^{*} E_{\alpha_{1}}^{*} E_{\alpha_{2}}^{*} E_{\alpha_{3}}^{*}}$$

- $\cdot \delta(E_b^*(p) + E_{\alpha_1}^*(p_1) E_{\alpha_2}^*(p_2) E_{\alpha_3}^*(p_3))\delta(\mathbf{p} + \mathbf{p}_1 \mathbf{p}_2 \mathbf{p}_3)$
- $\cdot \quad \langle \langle p\alpha_b p_1 \alpha_1 | \hat{G} | p_2 \alpha_2 p_3 \alpha_3 \rangle \rangle$
- $\cdot \quad \left[\langle \langle p_2 \alpha_2 p_3 \alpha_3 | \hat{G} | p \alpha_b p_1 \alpha_1 \rangle \rangle \langle \langle p_2 \alpha_2 p_3 \alpha_3 | \hat{G} | p_1 \alpha_1 p \alpha_b \rangle \rangle \right]$
- $\cdot \quad [f_{\alpha_2}(xp_2)f_{\alpha_3}(xp_3)\overline{f}_{\alpha_1}(xp_1)\overline{f}_b(xp) \overline{f}_{\alpha_2}(xp_2)\overline{f}_{\alpha_3}(xp_3)f_{\alpha_1}(xp_1)f_b(xp)]$

TEST PARTICLES

- Baryon phase space function, f, is Wigner transform of density matrix
- Approximate formally by sum of delta functions, test particles

$$f(ec{r},ec{p},t) = \int d^3r_0\,d^3p_0\,\delta^3(ec{r}-ec{R}(ec{r}_0,ec{p}_0,t_0))\,\delta^3(ec{p}-ec{P}(ec{r}_0,ec{p}_0,t_0))\,f(ec{r}_0,ec{p}_0,t_0)$$

 Insert back into integral equation to obtain equations of motion for 6 coordinates of each test particle

TEST PARTICLE EQUATIONS OF MOTION

$$\frac{d}{dt}\vec{p}_{i} = \vec{\nabla}U(\vec{r}_{i}) + \sum_{j\neq i} \frac{q_{i} q_{j}}{(\vec{r}_{i} - \vec{r}_{j})^{2}} + \mathcal{C}(\vec{p}_{i}),$$

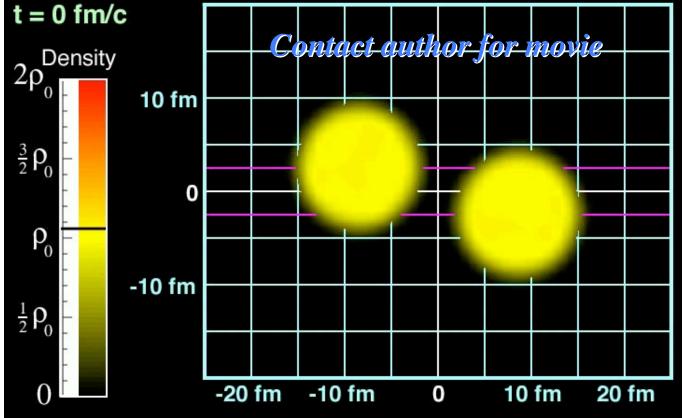
$$\frac{d}{dt}\vec{r}_{i} = \sqrt{\frac{\vec{p}_{i}}{\sqrt{m_{i}^{2} + p_{i}^{2}}}},$$

$$i = 1, \dots, (A_{t} + A_{p})\mathcal{N}$$

Nuclear EoS

Two-body scattering

EXAMPLE



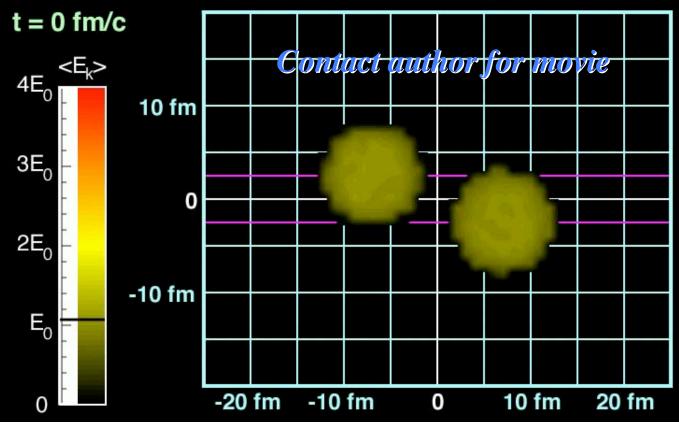
- Density in reaction plane
- Integration over momentum space
- Cut for z=0+-0.5 fm

MOMENTUM SPACE

- Output quantities (not input!)
- Momentum space information on
 - Thermalization & equilibration
 - Flow
 - Particle production
- Shown here: local temperature

W. Bauer, INT 2004

BUU: E/A = 155 MeV 86 Kr + 93 Nb, b = 5 fm



TRY THIS FOR SUPERNOVAE!

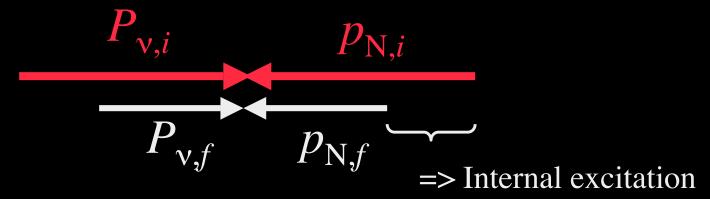
- 2 M_{\odot} in iron core = $2x10^{57}$ baryons
- 10⁷ test particles => 2x10⁵⁰ baryons/test particle ⊚
- Need time-varying grid for (non-gravity) potentials, because whole system collapses
- Need to think about internal excitation of test particles
- Can address angular momentum question [today]
- Can create v-test particles and give them finite mean free path => Boltzmann solution for v-transport problem [soon]
- Radiation transport via photon test particles (Bosons!)
- Should be able to treat magnetic fields selfconsistently [next year]

NEUTRINOS

- Neutrinos similar to pions at RHIC
 - Not present in entrance channel
 - Produced in very large numbers (RHIC: 10³, here 10⁵⁶)
 - Essential for reaction dynamics
- Different: No formation time or off -shell effects
- Represent 10^N neutrinos by one test particle
 - Populate initial neutrino phase space uniformly
 - Sample test particle momenta from a thermal dist.
- Neutrino test particles represent "3rd fluid", do NOT escape freely (neutrino trapping), and need to be followed in time.
- Neutrinos created in center and are "light" fluid on which "heavy" baryon fluid rests
 - Inversion problem
 - Rayleigh-Taylor instability
 - turbulence

NEUTRINO TEST PARTICLES

- Move on straight lines (no mean field)
- Scattering with hadrons
 - NOT negligible!
 - Convolution over all $\sigma_{Av} \propto A^2$ (weak neutral current)
 - Resulting test particle cross section angular distrib.: $\sigma_{\rm cm}(\theta_{\it f}) = \delta(\theta_{\it f} \theta_{\it i})$
 - Center of mass picture:



COUPLED EQUATIONS

$$\frac{\partial f_b(xp)}{\partial t} + \frac{\Pi^i}{E_b^*(p)} \nabla_i^x f_b(xp) - \frac{\Pi^\mu}{E_b^*(p)} \nabla_i^x U_\mu(x) \nabla_p^i f_b(xp) + \frac{M_b^*}{E_b^*(p)} \nabla_i^x U_s \nabla_p^i f_b(xp)
= I_{bb}^b(xp) + I_{b\nu}^b(xp)$$

$$\frac{\partial f_{\nu}(xk)}{\partial t} + \frac{k \cdot \nabla^{x}}{E_{\nu}(k)} f_{\nu}(xk) = I_{b\nu}^{\nu}(xk)$$

$$I_{bb}^{b}(xp) = \frac{\pi}{(2\pi)^{9}} \sum_{\alpha_{1}\alpha_{2}\alpha_{3}, m_{s}^{b}} \int \int \int d\mathbf{p}_{1} d\mathbf{p}_{2} d\mathbf{p}_{3} \frac{M_{b}^{*} M_{\alpha_{1}}^{*} M_{\alpha_{2}}^{*} M_{\alpha_{3}}^{*}}{E_{b}^{*} E_{\alpha_{1}}^{*} E_{\alpha_{2}}^{*} E_{\alpha_{3}}^{*}}$$

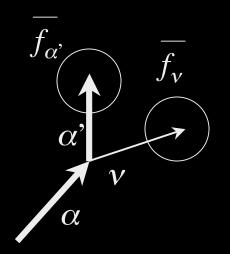
$$\delta(E_b^*(p) + E_{\alpha_1}^*(p_1) - E_{\alpha_2}^*(p_2) - E_{\alpha_3}^*(p_3))\delta(\mathbf{p} + \mathbf{p}_1 - \mathbf{p}_2 - \mathbf{p}_3)$$

- $\cdot \quad \langle \langle p\alpha_b p_1 \alpha_1 | \hat{G} | p_2 \alpha_2 p_3 \alpha_3 \rangle \rangle$
- $\cdot \quad \left[\left\langle \left\langle p_2 \alpha_2 p_3 \alpha_3 | \hat{G} | p \alpha_b p_1 \alpha_1 \right\rangle \right\rangle \left\langle \left\langle p_2 \alpha_2 p_3 \alpha_3 | \hat{G} | p_1 \alpha_1 p \alpha_b \right\rangle \right\rangle \right]$
- $\cdot \left[f_{\alpha_2}(xp_2) f_{\alpha_3}(xp_3) \overline{f}_{\alpha_1}(xp_1) \overline{f}_b(xp) \overline{f}_{\alpha_2}(xp_2) \overline{f}_{\alpha_3}(xp_3) f_{\alpha_1}(xp_1) f_b(xp) \right]$

Similar to Wang, Li, Bauer, Randrup, Ann. Phys. '91

$$I_{b\mathbf{V}}^{\mathbf{V}}(\boldsymbol{r},\boldsymbol{k},t) = I_{\mathrm{gain}}^{\mathbf{V}}(xk) - I_{\mathrm{loss}}^{\mathbf{V}}(xk)$$

NEUTRINO GAIN AND LOSS



 f_{α}

$$\overline{f} = 1 + f$$

$$I_{\text{gain}}^{\mathbf{V}}(xk) = \frac{\pi}{16(2\pi)^6} \sum_{\alpha\alpha'} \int \int \frac{M_{\alpha}^* M_{\alpha'}^*}{E_{\alpha}^*(p) E_{\alpha'}^*(p')}$$

$$\cdot \frac{\langle u_{\alpha'p'} | \hat{\underline{u}}(k) \hat{u}(p+p')^2 | u_{\alpha p} \rangle \cdot \langle u_{\alpha p} | \hat{\underline{u}}(k) | u_{\alpha'p'} \rangle}{E_{\mathbf{V}}^4(k)}$$

$$\cdot \delta(E_{\alpha'}^*(p') - E_{\mathbf{V}}(k) - E_{\alpha}(p)) \delta(\mathbf{p'} - \mathbf{p} - \mathbf{k})$$

$$\cdot \overline{f}_{\mathbf{V}}(xk) f_{\alpha'}(xp') \overline{f}_{\alpha}(xp) d\mathbf{p} d\mathbf{p'}$$

$$I_{\text{loss}}^{\mathbf{V}}(xk) = \frac{\pi}{16(2\pi)^6} \sum_{\alpha\alpha'} \int \int \frac{M_{\alpha}^* M_{\alpha'}^*}{E_{\alpha}^*(p) E_{\alpha'}^*(p')}$$

$$\cdot \frac{\langle u_{\alpha'p'} | \hat{\underline{u}}(k) \hat{u}(p+p')^2 | u_{\alpha p} \rangle \cdot \langle u_{\alpha p} | \hat{\underline{u}}(k) | u_{\alpha'p'} \rangle}{E_{\mathbf{V}}^4(k)}$$

$$\cdot \delta(E_{\alpha'}^*(p') - E_{\mathbf{V}}(k) - E_{\alpha}(p)) \ \delta(\mathbf{p'} - \mathbf{p} - \mathbf{k})$$

$$\cdot f_{\mathbf{V}}(xk) f_{\alpha}(xp) \overline{f}_{\alpha'}(xp') \ d\mathbf{p} d\mathbf{p'}$$

NUMERICAL REALIZATION

Test particle equations of motion

$$egin{array}{lcl} rac{d}{dt} ec{p}_{j} & = & -ec{
abla} U_{\mathrm{EoS},e^{-}}(ec{r}_{j}) + ec{F}_{G,j}(ec{r}_{1},\ldots,ec{r}_{N_{tp}}) + \mathcal{C}(ec{p}_{j}) + \mathcal{C}_{
u}(ec{p}_{j}) \ rac{d}{dt} ec{r}_{j} & = & rac{ec{p}_{j}}{\sqrt{m_{tp}^{2} + p_{j}^{2}}} \ j & = & 1,\ldots,N_{tp} \end{array}$$

- Nuclear EoS evaluated on spherical grid
- Newtonian monopole approximation for gravity

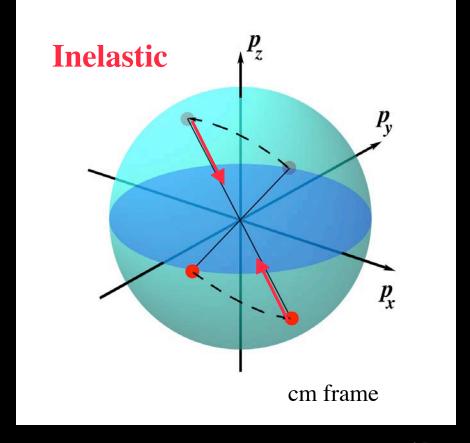
$$\vec{F}_{G,j} = -G \frac{m_{tp}^2 \# \left\{ i \in \{1, \dots, N_{tp}\} : |\vec{r}_i| < |\vec{r}_j| \right\}}{|\vec{r}_j|^3} \vec{r}_j.$$

TEST PARTICLE SCATTERING

 Nuclear case: test particles scatter with (reduced, due to Pauli Principle) nucleon-

nucleon cross sections

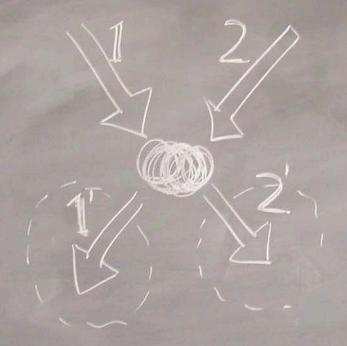
- Elastic and inelastic
- Similar rules apply for astro test particles
 - Scale invariance
 - Shock formation
 - Internal heating



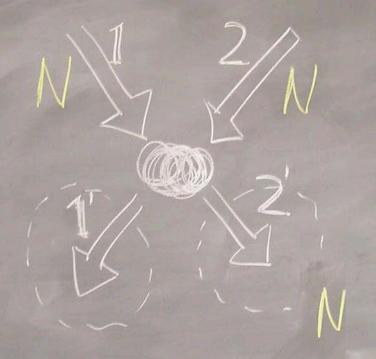
BODY SCATTERING

2/

==> 2 BODY SCATTERING



==> 2 BODY SCATTERING



==> 2 BODY SCATTERING

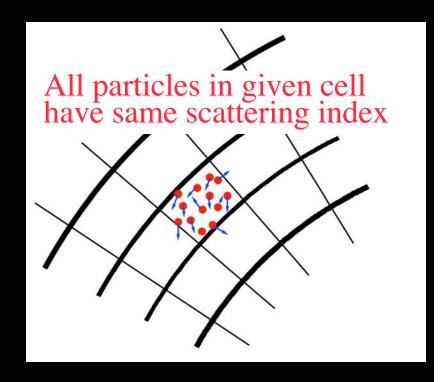
1 2/N

 $N = 10^8$ $N^3 = 10^{24}$

2 BODY SCATTERING MIVETSE

DSMC

- Stochastic Direct Simulation Monte Carlo
 - Do not use closest approach method
 - Randomly pick k collision partners from given cell
 - Redistribute momenta within cell with fixed i_r , i_θ , i_ϕ
- Technical details:
 - QuickSort on scattering index of each particle makes CPU time consumption ~ kN logN
 - Final state phase space approximated by local T Fermi-Dirac (no additional power of N)



 Hydro limit: just generate "enough" collisions, no need to evaluate matrix elements

EXCLUDED VOLUME

- Collision term simulation via stochastic scattering (Direct Simulation Monte Carlo)
 - Additional advection contribution (EoS modification)

$$\vec{d} = \frac{1}{2\sqrt{\pi}} \sqrt{\sigma_{NN}(E)} \cdot \vec{e}_{v-v'}$$

- Modification to collision probability

Excluded V

_Shadowing

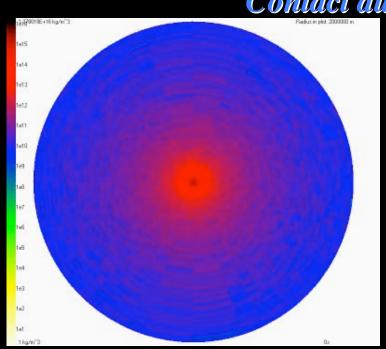
$$\frac{P'}{P} = \frac{1 - \frac{11}{8}b^E \rho(r)}{1 - 2b^E \rho(r)}, \quad b^E = \frac{2}{3}\pi a^3 = 2\text{nd Enskog virial coefficient}$$

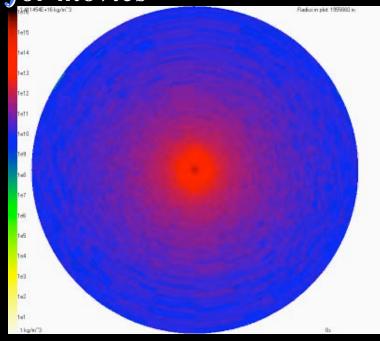
$$a = \sqrt{\frac{1}{4\pi n}} \sum_{i=1}^{n} \sigma_{i} \cdot (1 - 2\frac{\text{Pauli}}{(p_{F} + p_{B})^{3}}) = \frac{\text{hard}}{\text{sphere}}$$

Alexander, Garcia, Alder, PRL '95 Kortemeyer, Daffin, Bauer, PRB '96

EFFECT OF BARYON-BARYON COLLISIONS ON DYNAMICS

Contact author for movies





Mean field only

Parameters

$$N = 10^6$$

Grid: $90_r * 40_{\phi} * 40_{\theta}$

$$R_{\rm i} = 2 \, \rm km$$

$$M = 2 M_{\odot}$$

Hydro limit

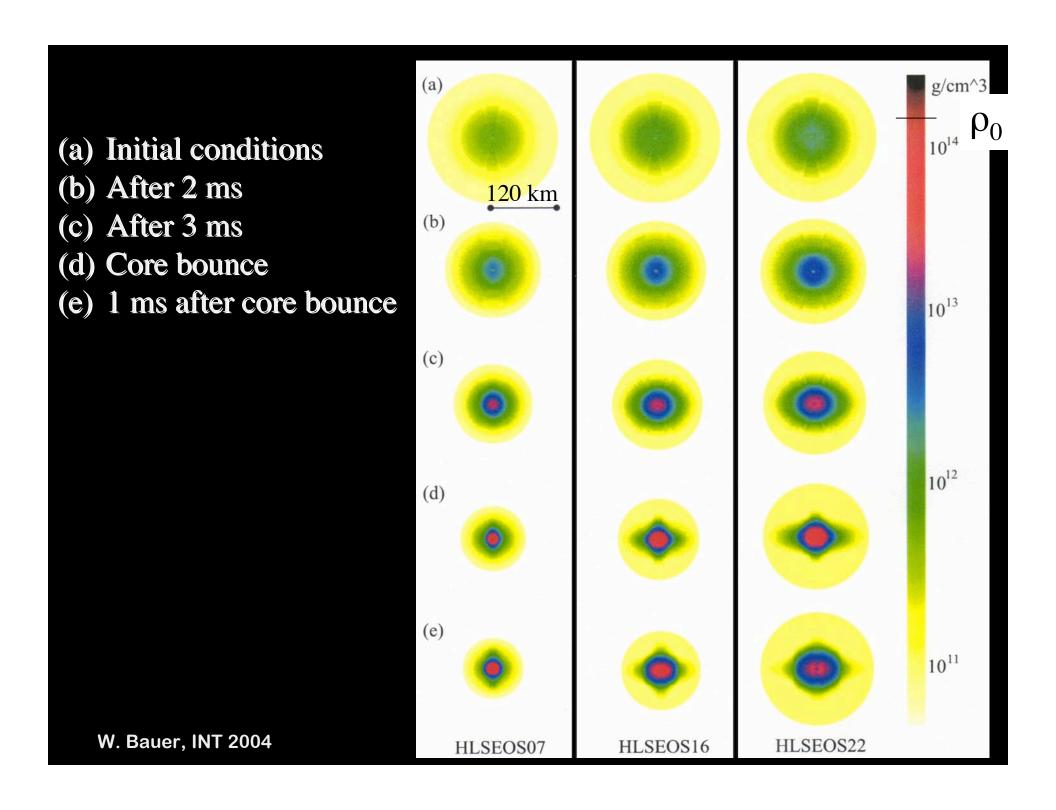
FIRST ROTATING RESULTS

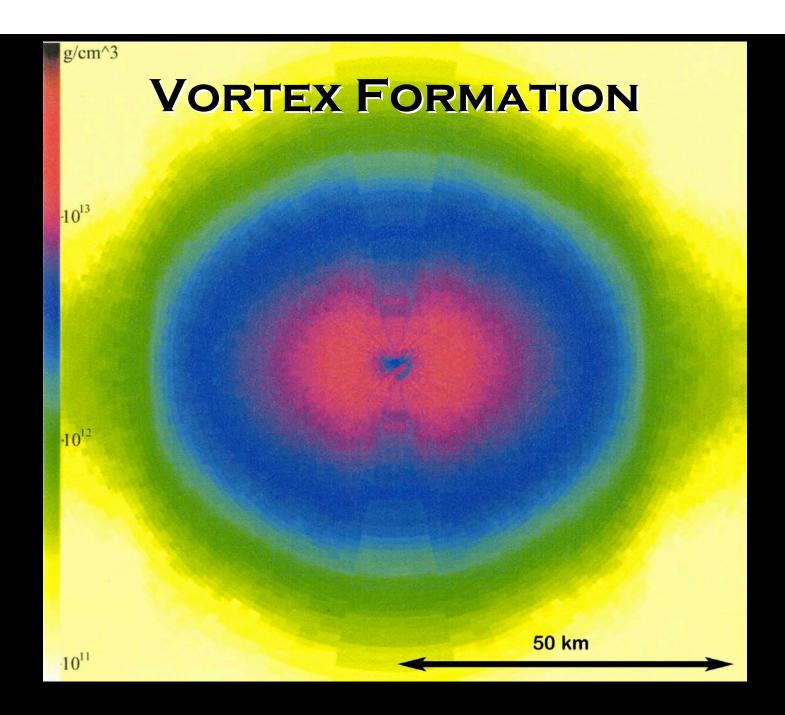
- Mean field level
 - Only nuclear and electron gas EoS, gravity
 - No collisions yet
- Exploratory: role of collective rotation

W. Bauer, INT 2004

EFFECTS OF ANGULAR MOMENTUM

W. Bauer, INT 2004 25





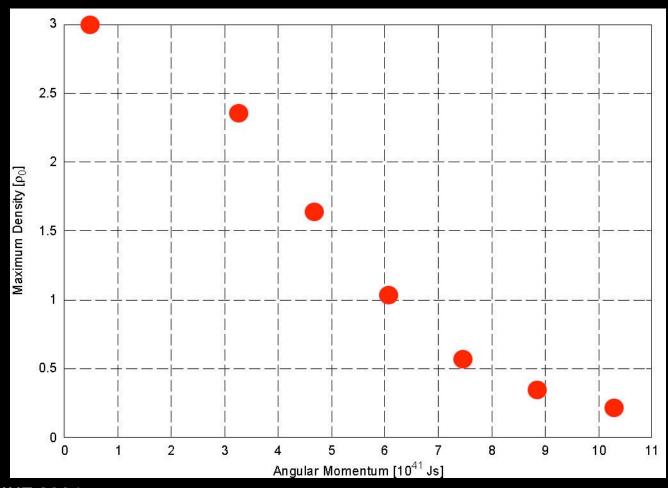
RESULTS

- "mean field" level
- 1 fluid: hadrons

Name of Run	$\omega_0 \left[\frac{\mathrm{rad}}{\mathrm{s}} \right]$	$ \vec{L}_0 $ [10 ⁴¹ Js]	$\left rac{E_{rot}}{E_G} ight _{init}$	t_{bounce} [ms]	$ ho_{max}\left[ho_{0} ight]$
HLSEOS01	10	0.466	0.027%	3.44	2.99
HLSEOS07	70	3.26	1.3%	3.61	2.35
HLSEOS10	100	4.67	2.7%	3.76	1.63
HLSEOS13	130	6.06	4.5%	3.89	1.03
HLSEOS16	160	7.46	6.8%	4.03	0.56
HLSEOS19	190	8.86	9.6%	4.17	0.34
HLSEOS22	220	10.3	13%	4.31	0.21

MAX. DENSITY VS. ÅNGULAR MOMENTUM

Mean field only!!!



THE PEOPLE WHO ACTUALLY DO THE WORK

Tobias Bollenbach (M.S. Thesis, MSU, 2002, now in Dresden, Germany)

Terrance Strother — MSU graduate student

Funding from NSF, Studienstiftung des Deutschen Volkes, and Alexander von Humboldt Foundation

W. Bauer, INT 2004