

Hans Bethe, 1906 -

"Energy Production in Stars" Phys. Rev. 55, 434 (1939)

Fusion Reactions in Stars: Challenges and Solutions

C.A. Bertulani NSCL, Michigan State University

- · Very high vs. very low energies
- Problems with low energy experiments
- NSCL/MSU's role: indirect methods
- Applications and status
- Perspectives

Challenges in Nuclear Astrophysics Very high vs. very low nuclear energies

100 GeV/nucleon

???

Exotic stellar site

Quark matter in compact stars, Big Bang

keV/nucleon

???

Typical stellar site Stellar evolution

Why are low energies interesting?

(b) Fate of massive stars

Helium burning: $({}^{12}C(\alpha,\gamma){}^{16}O)$

Supernovae remnants: black holes or neutron stars?

(c) Nucleosynthesis

Experimental problems

Steep energy dependence

Astrophysical S-factor

$$\sigma(E) = \frac{1}{E} S(E) \exp\left[-2\pi \frac{Z_1 Z_2 e^2}{\hbar v}\right]$$

Unreliable extrapolations

Other (serious) problems (a) **electron screening (in stars)**

- Dynamics of continuum electrons 1 10 % effect
- Fluctuations in ion number in Debye-Hueckel sphere

(b) Electron screening (in the laboratory)

Possible solutions (a) **Amplificaton of small effects**

C.B., Balantekin, Hussein, NPA 1997

Corrections	
Vaccuum Polarization	$\sim \! 1\%$
Relativity	10^{-3}
Bremsstrahlung	10^{-3}
Atomic porarization	10^{-5}
Nuclear polarization	$< 10^{-10}$

Not a solution!

(b) Wrong extrapolation of stopping power?

Stopping power at very low energies P + H (a) Test with the simplest system P + D

C.B. and de Paula, PRC 2000

c.c. t.d. Schroedinger eq. in a two-center basis |m>

$$\xi = \frac{r_1 + r_2}{R}; \qquad \eta = \frac{r_1 - r_2}{R}; \quad \phi$$
$$\Psi = F(\xi) G(\eta) e^{im\phi}$$

Elliptic coordinates

$$\frac{d}{d\xi} \left[\left(\xi^2 - 1\right) \frac{dF}{d\xi} \right] + \left[\frac{R^2 \xi^2}{2} E + 2R\xi - \frac{m^2}{\xi^2 - 1} \right] F(\xi) = 0$$
$$\frac{d}{d\eta} \left[\left(1 - \eta^2\right) \frac{dG}{d\eta} \right] - \left[\frac{R^2 \xi^2}{2} E + 2R\xi + \frac{m^2}{\eta^2 - 1} \right] G(\eta) = 0$$

Expansion basis: molecular orbitals for p+H

$$l_z \Phi_s = \pm \lambda \Phi_s$$

Value of λ 0123Code letter σ π δ ϕ, \cdots

Dynamical calculations

0

otherwise

$$i\hbar\frac{d}{dt}a_m(t) = E_m(t)a_m(t) - i\hbar\sum_n a_n(t)\left\langle m\left|\frac{d}{dt}\right|n\right\rangle$$

$$\left\langle m \left| \frac{d}{dt} \right| n \right\rangle = \frac{\left\langle m \left| dV_p \right\rangle dt \left| n \right\rangle}{E_n(t) - E_m(t)},$$

Hellman, Feynmann relation

For $E_p < 30 \text{ keV}$, only 1so and 2po 2-level problem

$$i\hbar \frac{d}{dt} \begin{pmatrix} a_{+} \\ a_{-} \end{pmatrix} = \begin{pmatrix} V_{+} + E_{0} & iW \\ iW & V_{-} + E_{0} \end{pmatrix} \begin{pmatrix} a_{+} \\ a_{-} \end{pmatrix}$$

$$W(t) = \hbar \frac{\left\langle \Psi_{1s\sigma} \middle| dV_p \middle| dt \middle| \Psi_{2p\sigma} \right\rangle}{E_{1s\sigma}(t) - E_{2p\sigma}(t)}$$

Charge-exchange x nuclear stopping

Stopping in H⁺ + He collisions

C.B., PLB 2004 Slater-type orbitals

$$\phi = N r^{n-1} e^{-\xi r} Y_{lm}(\theta, \phi)$$
$$\Phi_i = \sum_{i=1}^n \left[c^A_{ji} \phi^A_i + c^B_{ji} \phi^B_i \right]$$

$$F_{\mu\nu} = H_{\mu\nu} + \sum_{\lambda\rho} P_{\lambda\rho} \left[(\mu\nu \mid \lambda\rho) - \frac{1}{2} (\mu\rho \mid \lambda\nu) \right]$$

$$H_{\mu\nu} = \iint \phi_{\mu}^{*}(1) \left[-\frac{1}{2} \nabla_{1}^{2} - \sum_{A} \frac{1}{r_{1A}} \right] \phi_{\nu}^{*}(1) d\tau_{1}, \qquad P_{\lambda\rho} = 2 \sum_{i=1}^{occ} c_{\lambda i} c_{\rho i}$$

$$(\mu \nu | \lambda \rho) = \iint \phi_{\mu}(1) \phi_{\nu}(1) \frac{1}{r_{12}} \phi_{\lambda}(2) \phi_{\rho}(2) d\tau_{1} d\tau_{2}, \quad S_{\mu\nu} = \int \phi_{\mu}(1) \phi_{\nu}(1) d\tau_{1}$$

$$\mathbf{E}(\mathbf{R}) = \sum_{\mu\nu} P_{\mu\nu} H_{\mu\nu} + \frac{1}{2} \sum_{\mu\nu\lambda\rho} P_{\mu\nu} P_{\lambda\rho} \left[\left(\mu\nu \mid \lambda\rho \right) - \frac{1}{2} \left(\mu\rho \mid \lambda\nu \right) \right]$$

8 lowest levels in H⁺ + He molecule

Dynamics of H⁺ + He collisions

 $P = e^{-y}$

Damping of resonant exchange $H(1s) \Leftrightarrow He(1s2s)$

$$y = \frac{2\pi H_{12}^{2}}{\hbar |\dot{E}_{1} - \dot{E}_{2}|} \sim \frac{2\pi^{2}\Gamma^{2} \Delta t_{coll}}{E_{1} - E_{2}}$$

Landau-Zener

$$\frac{2\Gamma}{E_1 - E_2} \sim 0.1$$

$$P = e^{-\Gamma \Delta t_{coll}} \cos\left[\frac{H_{12} a}{2v}\right]$$

H⁺ + He exchange cross sections

Threshold effect

Data: Golser & Semrad, NIM 1992

Minimum momentum transfer:

 $\frac{\hbar^2 q_{\min}^2}{2m_e} \ge \Delta E$

$$\Rightarrow E_P \ge \frac{\mu^2}{4M_P m_e} \Delta E$$

He: $1s^2({}^{1}S_0) \rightarrow 1s2s({}^{1}S)$: 19.8 eV

 $\implies \qquad E_P \ge 8 \ keV$

Experimental Proof

 E_d [keV]

The role of NSCL/MSU: Indirect methods

(B) Asymptotic normalization coefficients

 $\sigma \propto |M|^2$ $[S(E) = Ee^{2\pi\eta}\sigma]$

 $\sigma_{capture} \propto (C_{Bp}^{A})^2$

$$M = \left\langle \boldsymbol{\Phi}_{A}(\boldsymbol{\xi}_{B}, \boldsymbol{\xi}_{p}, \boldsymbol{\xi}_{Bp}) \middle| \stackrel{\circ}{O}(\boldsymbol{r}_{Bp}) \middle| \boldsymbol{\Phi}_{B}(\boldsymbol{\xi}_{B}) \boldsymbol{\Phi}_{p}(\boldsymbol{\xi}_{p}) \boldsymbol{\Psi}_{i}^{(+)}(\boldsymbol{r}_{Bp}) \right\rangle$$

Integrate over ξ :

$$M = \left\langle I_{Bp}^{A}(r_{Bp}) \middle| \stackrel{\circ}{O}(r_{Bp}) \middle| \psi_{i}^{(+)}(r_{Bp}) \right\rangle$$

Low Energy: $I_{Bp}^{A}(r_{Bp}) \approx C_{Bp}^{A} \frac{W_{-\eta_{A},l+\frac{1}{2}}(2\kappa_{Bp}r_{Bp})}{\kappa}$ r_{Bp}

(C) <u>Coulomb dissociation method</u>

 $\frac{d\sigma}{dE_{\gamma}d\Omega} = \frac{1}{E_{\gamma}} \sum_{l} \frac{dn_{l}(E_{\gamma},\Omega)}{dE_{\gamma}d\Omega} \sigma_{\gamma+a\to b+c} (E_{\gamma})$ Theory **Detailed balance:** $\sigma_{\gamma+a} = \frac{k_{bc}^2}{k_{\gamma}^2} \sigma_{b+c}$

E

Baur, C.B. and Rebel, 1986

GSI, RIKEN: Invariant mass of fragments

Sam Austin: Longitudinal momentum distribution

$$5_{17}$$
 (0) = 18 ± 1.1 eV.b

Conclusions

- Problems in nuclear astrophysics
 - Atomic physics effects
 - poor statistics due to small cross sections

- <u>Indirect methods solve part of these problems</u>
 - •Transfer of nucleons: Trojan horse, ANC's
 - Coulomb dissociation method
 - Charge-exchange experiments (Zegers, JINA Talk February 2003)