Notre Dame, October 13, 2004

Evolution and Nucleosynthesis of Massive Stars

Alexander Heger

Stan Woosley Norbert Langer Tommy Rauscher Rob Hoffman Karlheinz Langanke Chris Fryer

Relative Abundance by Weight

Report by the NRC "Committee on the Universe" June, 2002

- What is the dark matter? (baryonic, n*, BH)
- What is the nature of dark energy? (SN Ia)
- ➢ How did the universe begin? (BB nucleosynthesis)
- Did Einstein have the last say on gravity?
- What are the masses of neutrinos and how have they shaped the evolution of the universe? (flavor mixing in stars and SNe)
- How do cosmic accelerators operate and what are they accelerating? (cosmic rays and GRB jets)
- > Are protons unstable?
- Are there new states of matter at exceedingly high temperature and density? (neutron star EOS)
- Are there additional space-time dimensions?
- How were the elements from iron to uranium made?
- Is a new theory of matter and light needed at the highest energies?

We want to understand the origin of the elements because:

- It is an interesting problem
- Nuclear transmutation is the origin of stellar energy generation
- We can use that understanding as a diagnostic of ...
 - stellar evolution
 - nova and supernova explosions
 - x-ray bursts
 - particle physics
 - the evolution of galaxies and the universe

Specific Nuclear Uncertainties

(massive stars only)

- ¹²C(a,g)¹⁶O
- ²²Ne(a,n)²⁵Mg
- ¹²C(n,g)¹³C, ¹⁶O(n,g)¹⁷O and other
 30 keV (n,g) cross sections
- Neutrino spallation of ⁴He, ¹²C, ¹⁶O, ²⁰Ne, ¹³⁹La, ¹⁸¹Ta and neutrino charged current reactions with ¹³⁸Ba, ¹⁸⁰Hf
- Weak rates for the iron group, especially ⁶⁰Co
- Rates for the *rp*-process in proton-rich winds of young neutron stars

- Photodisintegration rates for heavy nuclei for the g-process
- Mass excesses and half lives for the *r*-process
- Reaction rates affecting the nucleosynthesis of radioactive nuclei: ²²Na, ²⁶Al, ⁴⁴Ti, ^{56,57}Ni, ⁶⁰Co
- The nuclear EOS for core collapse supernovae
- Electron capture rates at high densities (r ~ 10¹¹ – 10¹³) for very heavy nuclei in core collapse (A up to several hundred)

Overview

- The life of massive stars
- The final fates of stars
- Nucleosynthesis in massive stars
- Neutrino nucleosynthesis
- Nuclear reaction uncertainties
- Summary

Star-forming region of 30 Doradus (Tarantula Nebula): Zoom into the central star cluster, R-136

Credit: Greg Bacon and Zolt Levay (STScl)

Once formed, the evolution of a star is governed by gravity:

continuing contraction to higher central densities and temperatures

NGC3982

The Crab Nebula in Taurus (VLT KUEYEN + FORS2)

ESO PR Photo 40f/99 (17 November 1999)

Stellar remnants

Fuel	Main Product	Secondary Product	T (10 ⁹ K)	Time (yr)	Main Reaction
Η	He	¹⁴ N	0.02	10 ⁷	$4 \mathbf{H} \xrightarrow{CNO} {}^{4}\mathbf{H}\mathbf{e}$

Fuel	Main Product	Secondary Product	T (10 ⁹ K)	Time (yr)	Main Reaction
Н	He	¹⁴ N	0.02	10 ⁷	4 H \rightarrow ^{CNO} ⁴ He
He	0, C	¹⁸ O, ²² Ne s-process	0.2	10 ⁶	3 He ⁴ → 12 C 12 C(a,g) 16 O

Fuel	Main Product	Secondary Product	T (10 ⁹ K)	Time (yr)	Main Reaction
Н	He	¹⁴ N	0.02	10 ⁷	$4 \mathbf{H} \xrightarrow{CNO} {}^{CNO} \mathbf{H} \mathbf{e}$
He	0, C	¹⁸ O, ²² Ne s-process	0.2	10 ⁶	3 He ⁴ → 12 C 12 C(a,g) 16 O
C	Ne, Mg	Na	0.8	10 ³	¹² C + ¹² C

Neutrino losses from electron/positron pair annihilation

- Important for carbon burning and beyond
- For T>10⁹ K (about 100 keV), occasionally:

g? e⁺ + e⁻ and usually

e⁺ + e⁻? 2g

 $e^+ + e^-$? $\mathbf{n}_e + \overline{\mathbf{n}}_e$

The neutrinos exit the stars at the speed of light while the e^{+,} e⁻, and the gs all stay trapped.

- This is an important energy loss with $\epsilon_v \approx -10^{15} (T/10^9 K)^9 \text{ erg g}^{-1} \text{ s}^{-1}$
- For carbon buring and beyond, each burning stage gives about the same energy per nucleon, thus the lifetime goes down as T⁻⁹

The sun as seen by Kamiokande

Fuel	Main Product	Secondary Product	T (10 ⁹ K)	Time (yr)	Main Reaction
Н	He	¹⁴ N	0.02	10 ⁷	$4 \mathbf{H} \xrightarrow{CNO} {}^{CNO} \mathbf{H} \mathbf{e}$
He	0, C	¹⁸ O, ²² Ne s-process	0.2	10 ⁶	3 He ⁴ → 12 C 12 C(a,g) 16 O
C	Ne, Mg	Na	0.8	10 ³	¹² C + ¹² C
Ne	O, Mg	AI, P	1.5	3	²⁰ Ne(ga) ¹⁶ O ²⁰ Ne(a,g) ²⁴ Mg

Fuel	Main Product	Secondary Product	T (10 ⁹ K)	Time (yr)	Main Reaction
Н	He	¹⁴ N	0.02	10 ⁷	$4 \mathbf{H} \xrightarrow{CNO} {}^{CNO} \mathbf{H} \mathbf{e}$
He	0, C	¹⁸ O, ²² Ne s-process	0.2	10 ⁶	3 He ⁴ → 12 C 12 C(a,g) 16 O
C	Ne, Mg	Na	0.8	10 ³	¹² C + ¹² C
Ne	O, Mg	AI, P	1.5	3	²⁰ Ne(ga) ¹⁶ O ²⁰ Ne(a,g) ²⁴ Mg
O	Si, S	CI, Ar, K, Ca	2.0	0.8	¹⁶ O + ¹⁶ O

Fuel	Main Product	Secondary Product	T (10 ⁹ K)	Time (yr)	Main Reaction
Н	He	¹⁴ N	0.02	10 ⁷	$4 \mathbf{H} \xrightarrow{CNO} {}^{CNO} \mathbf{H} \mathbf{e}$
He	0, C	¹⁸ O, ²² Ne s-process	0.2	10 ⁶	3 He ⁴ → 12 C 12 C(a,g) 16 O
C	Ne, Mg	Na	0.8	10 ³	¹² C + ¹² C
Ne	O, Mg	AI, P	1.5	3	²⁰ Ne(ga) ¹⁶ O ²⁰ Ne(a,g) ²⁴ Mg
O	, Si, S	CI, Ar, K, Ca	2.0	0.8	¹⁶ O + ¹⁶ O
Si, S	Fe	Ti, V, Cr, Mn, Co, Ni	3.5	0.02	²⁸ Si(ga)

Explosive Nucleosynthesis

in supernovae

Fuel	Main Product	Secondary Product	T (10 ⁹ K)	Time (s)	Main Reaction
Innermost ejecta	<i>r</i> -process	-	>10 low Y _e	1	(n, g), b -
Si, O	⁵⁶ Ni	iron group	>4	0.1	(a,g)
Ο	Si, S	CI, Ar, K, Ca	3 - 4	1	¹⁶ O + ¹⁶ O
O, Ne	O, Mg, Ne	Na, AI, P	2 - 3	5	(ga)
		p-process ¹¹ B, ¹⁹ F, ¹³⁸ La, ¹⁸⁰ Ta	2 - 3	5	(g n)
		n-process		5	(n , n '), (n , e ⁻)

Change of the stellar structure as a function of initial mass

- Mass loss becomes more important
- The "cores" becomes bigger, the density gradients more shallow
- The evolution time-scale of all burning phases accelerates
- Central carbon burning becomes radiative, central entropy and Y_e increase

final mass, remnant mass (solar masses, baryonic)

Fallback

in supernovae

can swallow the metals produced in the hydrostatic and explosive burning phases and can lead to the delayed formation of a **black hole**

Suddenly, through forces not yet fully understood, Darren Belsky's apartment became the center of a new black hole.

final mass, remnant mass (solar masses, baryonic)

ζ Ω metal JJ Electe

Massive Star Fates as Function of **Mass and Metallicity** (single stars)

metallicity (roughly logarithmic scale)

metallicity (roughly logarithmic scale)

metallicity (roughly logarithmic scale)

The Calculations

- Complete stellar evolution calculations including all relevant isotopes up to bismuth
- We include most recent experimental and theoretical nuclear reaction rates
- Supernova explosion and explosive nucleosynthesis is followed in (one-dimensional) hydrodynamic calculation (explosion model parameterized)
- Nucleosynthesis by "hot" neutrinos form the proto-neutron star is included

$25 \ M_{\odot} \ star$

Presupernova production factors relative to solar composition

"band of acceptable co-production" defined by -¹⁶O production C(± a factor 2)

Explosive Nucleosynthesis contribution

$15 \ M_{\odot} \ star$

Production factors relative to solar composition

"band of acceptable co-production" defined by ¹⁶O production (± a factor 2)

The Results

- Current stellar model can produce most of the isotopes up to a mass number of A ≈ 85 in about solar abundances (relative to oxygen)
- many proton-rich heavy elements ("*p*-process elements") are also well co-produced in about solar abundance ratio by the g-process and the m-process
- some light and some rare heavy isotopes are produced by the m-process and may dominate their elemental production (¹¹B, ¹⁹F, ¹³⁸La, ¹⁸⁰Ta)

The *p*-process

- Production of (mostly rare) proton-rich nuclei from abundant neighbors
- γ-process: photo-sublimation, mostly (γ,n) reactions close to valley of stability
- v-process:
 - neutral current (v,v') scattering to excited nucleus that decays by particle emission
 - charges current (v,e⁻), (v,e⁺); excited daughter nucleus can *also* decay by particle emission {γ, n, p, a}*

The p-process

- Production of (mostly rare) proton-rich nuclei from abundant neighbors
- γ-process: photo-sublimation, mostly (γ,n) reactions close to valley of stability
- v-process:
 - neutral current (v,v') scattering to excited nucleus that decays by particle emission
 - charges current (v,e⁻), (v,e⁺); excited daughter nucleus can *also* decay by particle emission {γ, n, p, a}*

mass fraction

The Production of ¹³⁸La by geprocess and meprocess

The Impact of ¹³⁸Ba(n,e⁻)¹³⁸La

The Production of ¹⁸⁰Ta by gprocess and n-process 10⁻⁹ S25nu 10⁻¹⁰ pre-SN 10^{-11} post-SN 10-12 Hf180 Ta180 Ta181 10-13 10^{-14} 10^{-15} 2 6 10 <u>A</u> 8

enclosed mass (solar masses)

mass fraction

The Production of ¹⁸⁰Ta by geprocess and meprocess

n-process production of ¹⁸⁰Ta

Ittle production by ¹⁸¹Ta(v,v' n)¹⁸⁰Ta
→production dominated by ¹⁸¹Ta(gn)¹⁸⁰Ta and ¹⁸⁰Hf(n_e,e⁻)¹⁸⁰Ta

Neutrino Nucleosynthesis

- ¹³⁸La consistently produced by ¹³⁸Ba(v,e⁻)¹³⁸La for $T(v_e) = 4$ MeV
- Very sensitive to neutrino temperature:

 for T(v_e) = 6 MeV: 2× higher ¹³⁸La yield (too high)
 for T(v_e) = 8 MeV: 5× higher ¹³⁸La yield (too high)

→Fossil v-process abundances in the sun may constrain v temperature (and oscillations?) (combination of ¹¹B, ¹⁹F, ¹³⁸La, ¹⁸⁰Ta, ...) while *current* solar neutrinos constrain ∆m²

Nuclear Reaction Rate Uncertainties

...are some of the key uncertainties in current stellar evolution and nucleosynthesis modeling

•
$${}^{12}C(a,g){}^{16}O$$

current uncertainty in ¹²C(**a**,**g**)¹⁶O rate is ±30% (1**s**)

Variation of the ${}^{12}C(a,g){}^{16}O$ rate in a $20M_{\odot}$ star

Nuclear Reaction Rate Uncertainties

...are some of the key uncertainties in current stellar evolution and nucleosynthesis modeling

•
$${}^{12}C(a,g){}^{16}O$$

• ²²Ne(**a**,n)²⁵Mg

Final Abundances 25 Msun

Nuclear Reaction Rate Uncertainties

...are some of the key uncertainties in current stellar evolution and nucleosynthesis modeling

- ²²Ne(a,n)²⁵Mg
- ⁶²Ni(n,**g**)⁶³Ni

recent evaluations of the ⁶²Ni(n,**g**)⁶³Ni rate

Summary

Massive stars are the dominant source of oxygen most "heavier" material.

- Massive stars produce
 - Oxygen and other "alpha elements"
 - The s-process up to mass number ~90
 - The proton-rich nuclei by the **g** process (¹¹B, ¹⁹F, ¹⁸⁰Ta, ...)
 - Rare and light isotopes by the v-process (^{138}La , ^{11}B , ^{180}Ta , ^{19}F)
 - Possibly of being the site of the *r*-process
- v-process is probe for SN **m** temperature and **m** oscillations
- Important uncertain nuclear reaction rates comprise
 - ¹²C(**a**,**g**)¹⁶O (stellar evolution calculations still favor 170 keV barn at 300 keV)
 - ²²Ne(**a**,n)²⁵Mg
 - $^{22}Ne(\mathbf{a},n)^{25}Mg / ^{22}Ne(\mathbf{a}, \mathbf{g})^{26}Mg$ branching ratio
 - Neutron capture cross sections for weak s-process component