The Thermal State of Accreting White Dwarfs

and What It Tells Us About the Evolution of Compact Binaries

Dean Townsley

JINA, The University of Chicago

(Ph.D. work performed with Lars Bildsten, U.C. Santa Barbara)

Outline

- Accreting WD Thermal State essential for:
 - Testing Interruped Magnetic Braking $\langle \dot{M} \rangle (t)$
 - Fully consistent classical nova ignition $M_{\rm ign}$
 - Interpretation of spectral measurements $T_{
 m eff}$
 - Late-time population properties M_V
 - Accreting WD Seismology M, $M_{\rm acc}$
- Context: Cataclysmic Variables
- Quasi-Static Model of Accreting WD
- The equilibrium T_c
- Comparisons with Observations $T_{\rm eff}$, $M_{\rm ign}$, CN rate
- Seismology

Cataclysmic Variables

WD with low mass star companion in Roche lobe contact. Exhibit outbursts:

Classical Nova – Thermonuclear explosion on WD recur $\sim 10^4-10^6$ yr Dwarf Nova – Accretion disk "high" state recur $\sim 0.1-10$ yr

Angular Momentum Loss

Evolution of tight binaries determined by loss of angular momentum: *j*

Magnetic Braking

magnetically attached wind from companion star

long P_{orb} , high \dot{J}

short P_{orb} , low \dot{J}

Interrupted Magnetic (Wind) Braking?

Open Questions:

- Is Mag. Braking prescription right?
- Does this fit observed population?

We can test this!

 $M_{\mathrm{W}^{\mathrm{D}}} = 0.7 M_{\odot}$, Howell, Nelson, & Rappaport 2001, ApJ 550, 897

Measurements of WD $T_{\rm eff} \Rightarrow \langle \dot{M} \rangle$

- Dwarf Nova Systems
- Magnetics

Townsley & Gänsicke, in preparation

UV measurements (HST, IUE) During DN quiescence

(e.g. Howell, Gänsicke, Szkody, & Sion 2002, ApJ, 575, 419)

Thermal emission sensitive to \dot{M} averaged over the thermal time of the radiative envelope ($\sim 1000~\rm{yr}$)

Can inform our understanding of CV population and evolution

CV WD Environment

Observed timescales in Dwarf Nova (Disk outburst):

Disk Outburst: lasts days-weeks

Between Outbursts: month-years

Envelope Thermal time: 10^3 yr

Timescales in Classical Nova (Thermonuclear outburst):

Outburst: lasts < 10 years

Between Outbursts: $10^5 - 10^7$ years

Using $\langle \dot{M} \rangle$: The time averaged accretion rate We have calculated

$$M, \langle \dot{M} \rangle \rightarrow T_{\rm eff}, M_{\rm ign}$$

which connects the WD evolution to that of the binary.

Gravitational Energy Release

$$t_{\rm th} \equiv \frac{\Delta M c_P T}{L} < t_{\rm acc} \equiv \frac{\Delta M}{\langle \dot{M} \rangle}$$

Heat liberated by compression

transferred out to surface in to core "compressional heating"

Quasi-static Model

log P

Heat Equation:

$$v_r = -\langle \dot{M} \rangle / 4\pi r^2 \rho$$

$$T\frac{Ds}{Dt} = T\frac{\partial s}{\partial t} + Tv_r \frac{\partial s}{\partial r} = -\frac{dL}{dM_r} + \epsilon_N$$

Envelope Dominates

$$\frac{\langle \dot{M} \rangle}{4\pi r^2 \rho} T \frac{\partial s}{\partial r} = \frac{dL}{dM_r} + \epsilon_N$$

Without ϵ_N , $dr = g\rho dP$

$$L = -\langle \dot{M} \rangle \int_{0}^{P} T \frac{\partial s}{\partial P} dP$$

Simple integration to $M_{\rm acc} \sim 10^{-3} M_{\odot}$

$$L_{\mathrm{H/He}} \approx 2.5 \frac{kT_c}{\mu m_p} \langle \dot{M} \rangle$$
 $L_{\mathrm{C/O}} \approx 16 \frac{kT_c}{\mu_i m_p} \langle \dot{M} \rangle$

 $\mu =$ mean molecular weight

with $\mu \simeq 0.6$ and $\mu_i \simeq 14$

$$rac{L_{
m H/He}}{L_{
m C/O}} \simeq 4$$

L dependence on T_c

$$\langle L_{\rm core} \rangle = \frac{1}{t_{\rm CN}} \int_0^{t_{\rm CN}} L_{\rm core} dt$$

$\langle L_{ m core} angle$ and the equilibrium T_c

$$\langle L_{\rm core} \rangle = \frac{1}{t_{\rm CN}} \int_0^{t_{\rm CN}} L_{\rm core} dt$$

When
$$M_{\rm ej}=M_{\rm ign}$$
, $\langle L_{\rm core} \rangle = 0$ defines an

Equilibrium T_c

which is set by M and $\langle \dot{M} \rangle$

Equilibrium $T_c \to M_{\rm ign}$, $T_{\rm eff}$

 $X_3 = \text{mass fraction of }^3\text{He}$ in accreted material

$T_{ m eff}$ vs. $P_{ m orb}$

- Dwarf Nova Systems
- Magnetics

Townsley & Gänsicke, in preparation

Theory range shown: $0.6-1.0M_{\odot}$

Factor of $\sim 10 \; \langle \dot{M} \rangle$ contrast across period gap confirmed

Current Mag. Braking prescription matches well with DN at 4-5 hours

Separate population of high $\langle \dot{M} \rangle$ at 3 hours?

Magnetic CVs above gap near Grav. Radiation prediction

– WD magnetic field preventing magnetic braking?!

(Li, Wu, & Wickramasinghe 1994, MNRAS, 268, 61)

$T_{ m eff}$ vs. $P_{ m orb}$ Below Gap

\dot{J} from GW,

Kolb & Baraffe 1999, MNRAS, 309, 1034 Filled points,

$$M = \begin{array}{c} 0.9 \pm 0.15 \\ 0.82 \pm 0.05 \end{array} M_{\odot}$$

M average of 0.76 expected from selection,

Dünhuber & Ritter 1993

M is surprisingly consistent

Likely $\langle \dot{M} \rangle > \langle \dot{M} \rangle_{GW}$, but only by small amount

Magnetics appear to have slightly lower $\langle \dot{M}
angle$

Theoretical P_{\min} well-known outstanding problem

Self Consistent $M_{\rm ign}$

Data points are $M_{\rm ej}$ for systems with $P_{\rm orb}$ also measured, various sources.

Lines are our $M_{\rm ign}$ with $\langle \dot{M} \rangle$ from magnetic braking (3-6 hours) and grav. rad. (< 2 hours)

Consistent with $M_{\rm ej}=M_{\rm ign}$, but not conclusive

Classical Nova $P_{\rm orb}$ Distribution

Theory curve uses Interrupted Magnetic Braking for

$$P_{\rm orb} \rightarrow \langle \dot{M} \rangle$$

and population n_P

(Howell, Nelson, Rappaport 2001, ApJ 550, 897)

Our $M_{
m ign}$ is used to calculate classical nova rate assuming average $M=1.0M_{\odot}$

- Again supports a factor of >10 drop in $\langle \dot{M} \rangle$ across gap
- Consistent with idea that CVs evolve across the gap
- Possible population of magnetic systems filling in gap
- Ignores selection effects hard to quantify

WD Thermal State Evolution

Phases of accretion

- 1. Magnetic Braking $\langle \dot{M} \rangle \sim 5 \times 10^{-9} M_{\odot} \ {\rm yr}^{-1}$
- 2. Period gap $\langle \dot{M} \rangle = 0$
- 3. Gravitational radiation $\langle \dot{M} \rangle \simeq 5 \times 10^{-11} M_{\odot} \ \mathrm{y}$
- 4. Post-period minimum $\langle \dot{M} \rangle < 10^{-11} M_{\odot} \ {\rm yr}^{-1}$

Phases of WD evolution

- 1. Reheating $T_{\rm eff}$ set by $\langle \dot{M} \rangle$
- 2. Equilibrium $T_{\rm eff}$ set by $\langle \dot{M} \rangle$
- 3. Cooling $T_{\rm eff}$ set by core cooling

Accretion resets the clock for WD cooling

Broadband Spectral Evolution

$$M=0.6M_{\odot}$$
, $\dot{J}_{
m binary}$ from grav. waves $\Rightarrow \langle \dot{M}
angle (t)$

(Kolb & Baraffe 1999, MNRAS, 309, 1034)

Transition from main sequence broadband fluxes to those of a WD.

Companion Mag. from

(Brocato, Cassisi, & Castellani 1998, MNRAS, 295, 711);

WD Mag. from

(Bergeron, Wesemael, & Beauchamp 1995,

PASP, 107, 1047)

Broadband CV Spectral Evolution

Proper-motion selected members of M4 at 4 core radii (Richer et al. 2002, ApJ, 574L, 151)

Color selection criteria for old CVs

CVs Mixed with WD population used to date cluster

Luminosity Function of Old CVs

Low $\langle \dot{M} \rangle$ leads to infrequent disk outbursts CV V magnitude dominated by WD

Most old CVs appear as cooling WDs until inspected carefully

Evolution of He Accretors (AM CVns)

WDs which accrete helium from a companion lower mass heilum WD

 $\langle \dot{M}
angle$ monotonically decreases with time as $P_{
m orb}$ increases

Curves show 2 WD masses and 2 possible donor thermal states

(Deloye & Bildsten 2003, ApJ, 598, 1217)

Similar evolution: reheating, equilibrium (short!), WD cooling

Accretion disk phenomenology not well understood, two-state (DN) accretion expected with increasing time spent in quiescence

Both measured M_V agree well with theory

Accreting WD Seismology

Distance broadly constrains M, $T_{\rm eff}$ relates $\langle \dot{M} \rangle$ and $M_{\rm acc}$

Only three modes observed, not well characterized

Fitting three modes finds weakly favored solution at $M=1.02M_{\odot}$,

$$M_{\rm acc} = 0.31 \times 10^{-4} M_{\odot} = 0.23 M_{\rm ign}$$

Need more, better characterized modes to constrain rotation

Summary

- Accreting WDs are reheated by "compressional heating" and Hydrogen "simmering"
- lacksquare Equilibrium T_c allows relation of observables to $M,\langle\dot{M}
 angle$
- Find good agreement between Interrupted Magnetic Braking and observations
 - Quiescent Dwarf Nova $T_{\rm eff}$
 - Reproduces classical nova period distribution
 - Both support a factor of 10 or more drop in \(\lambda M \rangle \) across gap
 - Comparison implies $M_{\rm ej} \approx M_{\rm ign}$
- Predict evolution of broadband colors in quiescence, important for surveys such as SDSS
- Predict late time magnitudes for both CVs and AM CVns
- lacksquare Seismology can determine M, $M_{\rm acc}$, need better data

Accreting WD Envelope

Envelope thermal time

$$\sim 10^3 \text{ yr}$$

Infall energy deposited near surface and quickly radiated away

Interested in energy deposited deep in the envelope

Accreting WD Envelope

quasi-static envelope

$$L_{\rm env} \sim gh\langle \dot{M} \rangle$$

$$\sim \langle \dot{M} \rangle \frac{kT_c}{\mu m_p}$$

So actually:

$$T_{ ext{eff}}(M,\langle\dot{M}
angle,M_{ ext{acc}},T_c)$$

$$M_{\mathrm{ign}}(M,\langle\dot{M}\rangle,T_{m{c}})$$

NGC 6397

Proper-motion selected members of NGC 6397

(King, Anderson, Cool, & Piotto

1998, ApJ, 492L, 37)

and Non-Flickerers

(Taylor, Grindlay, Edmonds, & Cool 2001, ApJ, 553L, 169)

T_c and Classical Nova Ignition

Conditions at base of H/He:

Evaluating envelope stability:

$$\frac{\partial \epsilon_N}{\partial T} = \frac{\partial \epsilon_{\text{cool}}}{\partial T}$$

What thermal state (T_c) corresponds a given $\langle \dot{M} \rangle$?