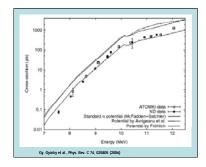
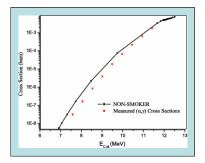


α -capture measurements on p-nuclei


Abundance calculations for the p-nuclei involve an extended network of about 20,000 nuclear reactions of almost 2000 nuclei with masses ranging from 12 to 210 [1]. These associated photodissociation and capture rates are typically calculated with the statistical Hauser Feshbach Model (HF-Model. The (γ , α) flow is critical for the processing of heavier elements towards lower masses in the p-process flow [1]. However these rates carry a substantial uncertainty which is believed to be associated with the alpha optical potential used for the HF calculations. Particularly critical reactions are (γ , α) photo-dissociation processes near the N,Z=50 closed shell since they feed the ^{92,94}Mo, ^{94,96}Ru p-nuclei, whose high observed natural abundance is in severe discrepancy with all theoretical predictions (e.g. [1,2]).

A critical test for the reliability of HF predictions is the measurement of ${}^{106}Cd(\alpha,\gamma){}^{110}Sn$ and ${}^{112}Sn(\alpha,\gamma){}^{116}Te$ along the p-process path at the Z=50 closed shell. This experiment was performed using the activation method; a stable sample ¹⁰⁶Cd and ¹¹²Sn is bombarded with a charged particle beam producing a radioactive species whose characteristic γ - rays are then measured to determine the production cross section. The experiment was carried out using the Notre Dame Tandem Pelletron accelerator. The highly enriched ¹¹⁰Cd and ¹¹²Sn targets were activated in the energy range of 7 to 12 MeV in 0.5 MeV increments. The Gamow window for the ${}^{106}Cd(\alpha,\gamma){}^{110}Sn$ reaction at a typical p-process temperature of T=3 GK ranges between 6.7 and 10 MeV while that of ${}^{112}Sn(\alpha,\gamma){}^{116}Te$ between 6.8 and 10.2 MeV. After irradiation, the γ -rays of the activated samples were measured using two Clover detectors in close geometry (9 mm between detector and target) surrounded by 5 cm lead bricks for reducing the natural background radiation.


The experimental results for α capture are consistently lower than the HF predictions, while the for parallel (α , α), (α ,p), and (α ,n) cross sections excellent agreement can be observed.

This work was supported by the Joint Institute for Nuclear Astrophysics under NSF Grant PHY0216783 and by the NSF Grant PHY01-40324.

[1] W. Rapp, M. Wiescher, J. Görres, H. Schatz, F. Käppeler, Astrophys. J. 653, 474 (2006)[2] M. Arnould, S. Goriely, Phys. Rep. 384, 1 (2003)

Experimental cross section results for the ${}^{106}Cd(\alpha,\gamma){}^{110}Sn$ reaction obtained at Notre Dame and Atomki facilities, in comparison with theoretical Hauser Feshbach model predictions for three different alpha potentials..

Experimental cross sections of the $^{112}Sn(\alpha,\gamma)^{116}Te$ reaction obtained at Notre Dame in comparison with Hauser Feshbach predictions.

Researchers:

A. Palumbo¹, Z. Fülüp³, J. Görres¹, T. Gurray², G. Gyürky ³, N. Özkan², E. Somorjai³, W. Tan¹, M. Wiescher¹

¹ University of Notre Dame

- ² Kokaeli University, Turkey
- ³ Atomki, Debrecen, Hungary