Joint Institute for Nuclear Astrophysics

R-matrix Analysis of 160 Reactions

Three important reactions to nuclear astrophysics populate the compound nucleus ¹⁶O. The ¹⁵N(p, γ)¹⁶O and the ¹⁵N(p, α_0)¹²C reactions form a branch point in the CNO cycle, the energy production mechanism for massive stars. The ¹²C(α , γ)¹⁶O reaction is one of the main reactions during helium burning and has been identified as one of the most critical reactions for understanding stellar nucleosynthesis. All three reactions may be investigated simultaneously using a multiple entrance/exit channel *R*-matrix approach. The JINA *R*-matrix coded, AZURE2, has been used for the calculations.

Fig. 1 – A simultaneous *R*-matrix fit to different reaction channel data sets from the literature above the proton separation energy in 16 O. Only a small sampling of the data which was considered is shown.

Fig. 2 – Fit to the new ${}^{12}C(\alpha,\gamma)$ cascade data of Schürmann *et al.* (2011).

Fig. 3 – Extrapolation of the ${}^{15}N(p,\gamma){}^{16}O$ S-factor into the stellar energy range.

Contact:

Richard deBoer University of Notre Dame rdeboer1@nd.edu

Researchers:

Richard deBoer (ND) Ethan Uberseder (ND) Dick Azuma (ND, UT) Joachim Görres (ND) Gianluca Imbriani (INFN) Michael Wiescher (ND)

To be Submitted:

Physical Review C