
Joint Institute for Nuclear Astrophysics

²²Ne(α ,n)²⁶Mg, Neutron source for the weak s-process: exploring the α -threshold in ²⁶Mg

Core He- burning in massive stars is the main site for the nucleosynthesis of the light sprocess nuclei, A < 100. Towards the end of this burning phase the temperature increases and effectively activates the ²²Ne(α ,n)²⁶Mg reaction. This reaction acts as the neutron source for the production of the s- process elements by neutron capture on the seed elements (A ~ 50-60). The cross section for this reaction has been measured down to the neutron threshold at E_{α}= 478 keV and the lowest energy resonance has been observed at E_{α}= 704 keV. However, the reaction rate still carries substantial uncertainties. Because of the large α - separation energy of ²⁶Mg (10.6 MeV), the level density is fairly large and many levels can contribute in principle to the reaction rates of the ²²Ne(α ,n)²⁶Mg reaction as well as to the competing ²²Ne(α , γ)²⁶Mg reaction. For this reason we have started an experimental program at RCNP, Osaka, to study the energy levels around the α - threshold using several different reactions. First results from α - inelastic scattering and α - transfer reactions are shown in figure 1. A comparison of the spectra reveals the high selectivity of the (⁶Li,d) reaction. This program will be continued with higher resolution and will include a study of the ²⁵Mg(d,p)²⁶Mg reaction using polarized beam.

Fig. 1 – The particle spectrum for the ${}^{26}Mg(\alpha, \alpha'){}^{26}Mg$ reaction is shown on the left covering the excitation range from ~ 4 MeV to ~ 20 MeV. The cut-out shows the energy range around the α -threshold in ${}^{26}Mg$. The corresponding energy range, as observed in the ${}^{22}Ne({}^{6}Li,d){}^{26}Mg$ reaction, is shown on the right

