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1. Introduction

Neutron stars, with their strong surface gravity, have interestingly
short timescales for the sedimentation of heavy elements.
Motivated by observations of X-ray bursts from sources with
extremely low persistent luminosities, we study how sedimentation
affects the distribution of isotopes and the ignition of H and He in
the envelope of an accreting neutron star and we apply the
sedimentation model to bursts with low mass accretion rates.

3. Results and Applications

Sedimentation and X-Ray bursts at Low Accretion Rates

X-ray bursts are the phenomena of explosive nuclear burning on the
surface of accreting neutron stars in low-mass X-ray binaries (LMXBs).
About half of the observed LMXBs show X-ray bursts. Cornelisse et al
(2004) summarized nine burst-only sources with very low persistent
luminosities, L, < 103 erg s-! (see Fig. 1). These sources are good
candidates for examining the effect of sedimentation effect on
composition redistribution during the long accretion history.

Fig. 1: Nine burst-only sources of L, < 10°¢erg s-'. The top bars are the peak
luminosities of the bursts. The middle bars are upper-limit persistent
luminosities constrained from the sensitivity of BeppoSAX. The bottom bars
are the persistent luminosities from the follow-up instruments (e.g. Chandra)
(from Cornelisse et al 2004).

The normal X-ray burst shows a fast rise of luminosity
in ~ 1 s followed with an exponential decay ~ 5-50 s.
However, recently there are several long bursts 230 kev
observed with exponential decay ~ 100-103 s. The i
persistent luminosities of these sources are ~ 0.01 i
Eddington limit (L= 2x10%8 erg s°!) . The lightcurve o
of one long burst from SLX 1735-269 is shown in Fig.

2. The relation between the long bursts and the mass  Fig, 2: The lightcurve of the long burst of SLX 1735-269 observed by
accretion rates is investigated in the work. Integral JEM-X (from Molkov et al 2004).
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Burst at Low Accretion Rates
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Fig. 4 (left) shows the temperature
evolution of the base of the accreted layer.
The tracks (solid lines) are for different
mass accretion rates (in unit of g cm2s")..
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The ignition curves of H and He when
sedimentation is (dashed lines) and is not
(dot-dashed lines) taken into account are
shown as well. The orange curves are

sketches of the increase of temperature after

H ignites. We adopt 0.1 Mev/nucleon as the £

inner flux from the crust. ;: 01057
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In Fig. 5 (right), we show the one- zone burst calculation following H ignition for two
mass accretion rates: 100 (solid lines) and 200 (dotted lines) g cm2 s°!, respectively. The
temperature rise is sufficient to trigger He ignition and to produce strong bursts.

2. Evolution of An Accreting Envelope with Diffusion
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At accretion rates > 500 g cm2 s°!, weak H flashes which do not ignite He burning can lead to the buildup of He
layer large enough to explain the long bursts, as shown in Fig. 6 and Fig. 7.

1. Weak H flashes 2. Accumulation of a large He layer
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Fig.6: One-zone
burst calculation
following H
ignition for two
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mass accretion
rates: 500 (solid
lines) and 103
(dotted lines) g cmr
2!, respectively.
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Fig. 7: Steady-state
thermal structure of an
accumulated pure He
layer for two accretion
rates: 500 (thick lines)
and 103 (thin lines) g cm
2 s'!, respectively. The
results for three different
inner fluxes, 0.1 (dotted
lines), 0.2 (dashed lines)
and 1.0 (dot-dashed
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