The Joint Institute for Nuclear Astrophysics

²⁴Mg($\alpha_r\gamma$)²⁸Si Resonance Parameters at Low Alpha Energies

E. Strandberg¹, H. Costantini¹, A. Couture², J. Görres¹, H.Y. Lee¹, K. Scheller³, E. Stech¹, M. Wiescher¹

¹Nuclear Structure Laboratory, University of Notre Dame ²Los Alamos National Laboratory ³University of Southern Indiana

Motivation: Carbon Burning

²⁸Si is built from alpha particles during later stages of stellar burning in massive stars

We measured the final step of this process:

²⁴Mg(α,γ)²⁸Si

Previously, this reaction has been studied at alpha energies down to 1.3MeV. We extended this range down to 1.0MeV, into the Gamow window for core carbon burning.

Experimental Techniques

- >We needed high alpha beam currents, durable targets with as much ²⁴Mg as possible, and a very efficient detection system!
- Beam: Using the 4MV KN accelerator at Notre Dame, we ran for 4 weeks with beam currents up to 150µA.
- Targets: We used natural magnesium evaporated on copper backings. Targets were stable up to 7 coulombs of accumulated charge.

With this detector setup, we can

exploit the level structure of ²⁸Si

of a high energy gamma in the

NaI's + 1779keV in the clover.

to form a coincidence requirement

etc.

Results

Excitation function

Using the thick-target yield, we calculated the resonance strength wy:

E _a (keV)	Current Value (meV)	Previous Experiments (meV)
1530	104 ± 21	110 ± 20 (Maas 78)
1413	0.16 ± 0.03	
1350	2.1 ± 0.5	1.9 ± 0.6 (Lyons 69)
1277	0.034 ± 0.009	
1178	0.34 ± 0.12	
1087	0.013 ± 0.005	
≤1065	≤ 0.004	

Still to do...

Finally, we will use the newly determined resonance parameters to calculate the reaction rate, which will be used to improve stellar modeling codes!

References

"The Chemical Evolution of Magnesium Isotopic Abundances on the Solar Neighborhood," Y. Fenner, B.K. Gibson, H.-c. Lee, A.I. Karakas, J.C. Lattanzio, A. Chieffi, M. Limongi & D. Young, PASA 20 (2003) Vol. 4

"Investigation of ²⁸Si Levels With the (α,γ) and (p,γ) Reactions," J.W. Maas, E. Somorjai, H.D. Graber, C.A. Van Den Wijngaart, C. Van Der Leun & P.M. Endt, Nucl.Phys. A301 (1978) 213

"Total Yield Measurements in $^{24}Mg(\alpha,\gamma)^{28}Si,''$ P.B. Lyons, Nucl.Phys. A130 (1969) 25

This project is funded by the NSF through grant PHY0216783, and the Universities of JINA.

Using the coincidence requirement, background gammas are reduced by 3 orders of magnitude, and weak features are clearly visible!

Ungated Ge Sum
Image: Constraint of the sector of the sect

1.53 .

 $^{24}Mq + \alpha$

Q-value:

9.984MeV

≈11MeV

1.78MeV

²⁸Si

