Abstract
We have observed six giants in the metal-poor globular cluster M15 using the Subaru Telescope to measure neutron-capture elemental abundances. There is star-to-star scatter in the heavy neutron-capture elements (e.g., Eu) but no significant s-process contribution as found in previous studies. We have found that there are anticorrelations between the abundance ratios of light to heavy neutron-capture elements ([Y/Eu] and [Zr/Eu]) and the abundance of heavy neutron-capture elements (e.g., Eu). Our results suggest that the light neutron-capture elements in those stars cannot be explained by only a single r-process. There was another process that contributed significantly to the light neutron-capture elements in M15. Our results also indicate that the heavy r-process elements were less dispersed than those light neutron-capture elements when M15 stars were formed.

Discussion
There are star-to-star abundance variations in heavy r-process elements (e.g., Eu) in M15. There is an anti-correlation between the abundance ratio of light to heavy neutron-capture elements (e.g., [Y/Eu], [Zr/Eu]) and the abundance of heavy r-process elements. Two different sources of neutron-capture elements contributed to M15 progenitor. Heavy r-process elements show a larger scatter than light neutron-capture elements.

neutron-capture elements in other metal-poor globular clusters
Our preliminary results of [Y/Eu] in M92 & M30 the abundance ratios of light to heavy neutron-capture elements varies in each GCs.

References
Sneden et al. 1997, 114, 1964
Sneden et al. 2000, 120, 1331