Nucleosynthesis in classical novae

Margarita Hernanz

Institut d'Estudis Espacials de Catalunya, IEEC-CSIC Barcelona (Spain)

OUTLINE

- Scenario of nova explosions: thermonuclear runaway Mixing between core and envelope material
- Properties of the underlying white dwarf: CO and ONe
- Theoretical models: general predictions as compared with observations
- Relevance of nucleosynthesis in classical novae:
 - chemical evolution of the Galaxy
 - presolar meteoritic grains
 - gamma-ray emission

Scenario

Mass transfer from the companion star onto the white dwarf (cataclysmic variable) Hydrogen burning in degenerate conditions on top of the white dwarf Thermonuclear runaway **Explosive H-burning**

Decay of short-lived radioactive nuclei in the outer envelope (transported by convection) Envelope expansion, L increase and mass ejection

Nova Models: Thermonuclear Burning of Hydrogen. CNO cycle

• Start: $\tau_{\beta+} < \tau(p,\gamma)$

CNO cycle operates in equ.

• T ~10⁸ K:
$$\tau_{\beta+} > \tau(p,\gamma)$$

CNO cycle β⁺-limited (bottle neck)

• Convection:

➢ fresh fuel brought to the burning shell

 $\succ \tau_{conv} < \tau_{\beta+}$: β^+ -unstable nuclei to external cooler regions where they are preserved from destruction

Later decay on the surface leads to expansion and luminosity increase

Novae observations: spectra - abundances determinations

Expansion velocities ~ 10²-10³ km/s Ejecta often enhanced in C, N, O, Ne Metallicities >> Solar

							/		
Nova	Year	X	Y	Ζ	CNO/Z	C/N	O/N	O/(C + N)	
T Aur	1891	0.47	0.40	0.13	1.00		0.65	0.65	
RR Pic	1925	0.53	0.43	0.043	0.74	0.18	0.26	0.22	
DQ Her	1934	0.27	0.16	0.57	1.00	0.20	0.76	0.63	
		0.34	0.09	0.57	1.00	0.20	1.26	1.05	
HR Del	1967	0.45	0.48	0.077	0.96		1.74ª	1.74	
V1500 Cyg	1975	0.49	0.21	0.30	0.92	0.93	1.73	0.90	
		0.57	0.27	0.16	0.93	1.41 ^b	1.22	0.51	
V1688 Cyg	19 78	0.45	0.22	0.33	1.00	0.50	0.86	0.57	
		0.45	0.23	0.32	0.98	0.34	0.93	0.70	
V693 CrA	1981	0.29	0.32	0.39	0.52°	0.06	1.50	1.42	
V1370 Aq1	1982	0.04	0.10	0.86	0.32°	0.06	0.19	0.15	
GQ Mus [^]	1983	0.27	0.32	0.41	0.97	0.08	1.00	0.93	
PW Vul	1984	0.47	0.23	0.30	0.99	0.52	0.59	0.39	
		0.54	0.28	0.18	1.00	0.29	0.35	0.27	
		0.69	0.25	0.067	0.99	0.67	0.29	0.27	
QU Vul	1984	0.33	0.26	0.40	0.63°	0.13	2.30	2.04	
V842 Cen	1986	0.41	0.23	0.36	0.99	0.57	0.14	0.09	
V827 Her	1987	0.36	0.29	0.35	0.98	0.36	0.07	0.05	
OV Vul	1987	0.68	0.27	0.053	0.96		4.10ª	4.10	
V2214 Oph	1988	0.34	0.26	0.40	0.93		0.19	0.19	
V977 Sco	1989	0.51	0.39	0.10	0.72		0.71	0.71	
V443 Sct	1989	0.49	0.45	0.062	0.97		0.13	0.13	
LMC	1990A	0.37	0.59	0.039	0.35°	0.08	0.82	0.76	
^a Exceptionally h	igh O/N an $N < 1$	nd C/N ∼	0.		0.73	3.1	9.7	2.4 S	OLAF
° Novae with low	CNO/Z ra	tios_pro	obably O	NeMg pro	ogenitors.		-		
110140	51, 5 /2 10	nios pr	ecuciy o	e le pro	Berniterbi	C/N<1			

Nova Abundances—Observations (Livio & Truran 1994)

Object	Year	Reference	Н	He	С	N	0	Ne	Na-Fe	Z	(Z/Z_\odot)	$(\mathrm{Ne}/\mathrm{Ne}_{\odot})$	CNO/Ne-Fe
Solar		1	0.71	0.27	0.0031	0.001	0.0097	0.0018	0.0034	0.019	1.0	1.0	2.7
T Aur	1891	2	0.47	0.40		0.079	0.051			0.13	6.8		
RR Pic	1925	3	0.53	0.43	0.0039	0.022	0.0058	0.011		0.043	2.3	6.3	2.9
DQ Her	1934	4	0.34	0.095	0.045	0.23	0.29			0.57	30.		
DQ Her	1934	5	0.27	0.16	0.058	0.29	0.22			0.57	30.		
HR Del	1967	6	0.45	0.48		0.027	0.047	0.0030		0.077	4.1	1.7	25.
V1500 Cyg	1975	7	0.49	0.21	0.070	0.075	0.13	0.023		0.30	16.	13.	12.
V1500 Cyg	1975	8	0.57	0.27	0.058	0.041	0.050	0.0099		0.16	8.4	5.6	15.
V1668 Cyg	1978	9	0.45	0.23	0.047	0.14	0.13	0.0068		0.32	17.	3.9	47.
V1668 Cyg	1978	10	0.45	0.22	0.070	0.14	0.12			0.33	17.		
V693 CrA	1981	11	0.40	0.21	0.004	0.069	0.067	0.023		0.39	21.	128.	
V693 CrA	1981	12	0.29	0.32	0.046	0.080	0.12	0.17	0.016	0.39	21.	97.	1.3
V693 CrA	1981	10	0.16	0.18	0.0078	0.14	0.21	0.26	0.030	0.66	35.	148.	1.2
V1370 Aql	1982	13	0.053	0.088	0.035	0.14	0.051	0.52	0.11	0.86	45.	296.	0.36
V1370 Aql	1982	10	0.044	0.10	0.050	0.19	0.037	0.56	0.017	0.86	45.	296.	0.48
GQ Mus	1983	14	0.37	0.39	0.0081	0.13	0.095	0.0023	0.0039	0.2 4	13.	1.2	38.
PW Vul	1984	15	0.69	0.25	0.0033	0.049	0.014	0.00066		0.067	3.5	0.38	100.
PW Vul	1984	10	0.47	0.23	0.073	0.14	0.083	0.0040	0.0048	0.30	16.	2.3	34.
PW Vul	1984	16	0.617	0.247	0.018	0.069	0.0443	0.001	0.0027	0.14	7.7	1.	31.
QU Vul	1984	17	0.30	0.60	0.0013	0.018	0.039	0.040	0.0049	0.10	5.3	23.	1.3
OU Vul	1984	10	0.33	0.26	0.0095	0.074	0.17	0.086	0.063	0.40	21.	49.	1.7
QU Vul	1984	18	0.36	0.19		0.071	0.19	0.18	0.0014	0.44	23.	100.	1.4
V842 Cen	1986	10	0.41	0.23	0.12	0.21	0.030	0.00090	0.0038	0.36	19.	0.51	77.
V827 Her	1987	10	0.36	0.29	0.087	0.24	0.016	0.00066	0.0021	0.35	18.	0.38	124.
QV Vul	1987	10	0.68	0.27		0.010	0.041	0.00099	0.00096	0.053	2.8	0.56	26.
V2214 Oph	1988	10	0.34	0.26		0.31	0.060	0.017	0.015	0.40	21.	9.7	12.
V977 Sco	1989	10	0.51	0.39		0.042	0.030	0.026	0.0027	0.10	5.3	15.	2.5
V433 Sct	1989	10	0.49	0.45		0.053	0.0070	0.00014	0.0017	0.062	3.3	0.80	33.
V351 Pup	1991	19	0.37	0.25	0.0056	0.076	0.19	0.11		0.38	20.	63.	2.4
V1974 Cyg	1992	18	0.19	0.32		0.085	0.29	0.11	0.0051	0.49	27.	68.	3.2
V1974 Cyg	1992	20	0.30	0.52	0.015	0.023	0.10	0.037	0.075	0.18	9.7	21.	3.1
V838 Her	1991	11	0.60	0.31	0.012	0.012	0.004	0.056		0.09	0.11	31.	

TABLE 2 Heavy-element Mass Fractions in Novae from Optical and Ultraviolet Spectroscopy

Gehrz et al 1998, PASP

Abundance determinations from IR observations

Gehrz et al 1998, PASP

Nova	Х	Y	$\frac{(n_N/n_T)_{norm}}{(n_N/n_T)_{\odot}}$
QU Vul/1984 #2	Ne	Н	≥1.2
QU Vul/1984 #2	Al	Si	70
QU Vul/1984 #2	Mg	Si	4.7
QU Vul/1984 #2	Ne	Si	≥6.4
V1974 Cyg/1992	Ne	Н	≥4
V1974 Cyg/1992	Ne	Н	≥ 10
V1974 Cyg/1992	Ne	Si	≈35
V1974 Cyg/1992	Al	Si	≈5
V1974 Cyg/1992	Mg	Si	≥3
V1974 Cyg/1992	С	Н	≈12
V1974 Cyg/1992	Ν	Н	≈50
V1974 Cyg/1992	0	Н	≈25
V1974 Cyg/1992	Ne	Н	≈50
V1974 Cyg/1992	Mg	Н	≈5
V1974 Cyg/1992	Al	Н	≈5
V1974 Cyg/1992	Si	Н	≈6
V1974 Cyg/1992	S	Н	≈5
V1974 Cyg/1992	Ar	Н	≈5
V1974 Cyg/1992	Fe	Н	≈4
V1974 Cyg/1992	Ne	0	≈4
V705 Cas/1993	Silicates	Н	≈15
V705 Cas/1993	С	Н	≈45
Nova Aql/1995	С	Н	≤0.6

Nova Models: need of core-envelope mixing

- Z observed >> solar -> mixing CO or ONe core solar envelope accreted
- Explosion itself (fast nova) -> initial overabundance of CNO -> mixing

JINA Workshop Novae and SNIa, 20-21 May 2005, KITP, UCSB

Nova Models: need of core-envelope mixing

Shear instabilities of the transversal component of the convective flow induce mixing of CNO elements from the core.

Convective cells and convective velocities are bigger than those predicted by the 1D MLT.

Nova Models: need of coreenvelope mixing

Velocity

Flow dominated by small convective eddies

More limited dredge-up and mixing

Kercek et al. 1998, A&A

Fig. 1a-h. Velocity field at different stages of the evolution for the low resolution run. The color coding is done according to the absolute value of the velocity at each point. T8 denotes the temperature of the hottest individual zone.

The Sensitivity of Multidimensional Nova Calculations to the outer Boundary Condition

Glasner, Livne & Truran, 2005

In this study, we demonstrate that the imposed outer boundary condition can have a dramatic effect on the solution. Several commonly used choices for the outer boundary conditions are examined. It is shown that the solutions obtained from Lagrangian simulations, where the envelope is allowed to expand and mass is being conserved, are consistent with spherically symmetric solutions. In Eulerian schemes which utilize an outer boundary condition of free outflow, the outburst can be artificially quenched.

ON HEAVY ELEMENT ENRICHMENT IN CLASSICAL NOVAE

A. ALEXAKIS,^{1,2} A. C. CALDER,^{1,3} A. HEGER,^{1,4,5} E. F. BROWN,^{1,3} L. J. DURSI,^{1,3} J. W. TRURAN,^{1,3,4} R. ROSNER,^{1,2,3,4}
 D. Q. LAMB,^{1,3,4} F. X. TIMMES,^{1,3} B. FRYXELL,^{1,4} M. ZINGALE,⁶ P. M. RICKER,^{7,8} AND K. OLSON^{1,9}

ApJ, 602 (2004)

Many classical nova ejecta are enriched in CNO and Ne. Rosner and coworkers recently suggested that the enrichment might originate in the resonant <u>interaction between large-scale shear flows in the accreted H/He envelope and gravity waves at the interface between the envelope and the underlying C/O white dwarf. The shear flow amplifies the waves, which eventually form cusps and break. This wave breaking injects a spray of C/O into the superincumbent H/He.</u>

In the absence of enrichment prior to ignition, the base of the convective zone, does not reach the C/O interface. As a result, there is no additional mixing, and the runaway is slow. In contrast, the formation of a mixed layer during the accretion of H/He, prior to ignition, causes a more violent runaway. The envelope can be enriched by $\leq 25\%$ of C/O by mass (consistent with that observed in some ejecta) for shear velocities, over the surface, with Mach numbers ≤ 0.4 .

ON HEAVY ELEMENT ENRICHMENT IN CLASSICAL NOVAE

A. ALEXAKIS,^{1,2}
 A. C. CALDER,^{1,3}
 A. HEGER,^{1,4,5}
 E. F. BROWN,^{1,3}
 L. J. DURSI,^{1,3}
 J. W. TRURAN,^{1,3,4}
 R. ROSNER,^{1,2,3,4}
 D. Q. LAMB,^{1,3,4}
 F. X. TIMMES,^{1,3}
 B. FRYXELL,^{1,4}
 M. ZINGALE,⁶
 P. M. RICKER,^{7,8}
 AND K. OLSON^{1,9}

Fig. 1.—Breaking C/O waves, as determined by simulations in two dimensions. Gravity points toward the bottom of the figure, with the vertical distance y in units of the pressure scale height H, as evaluated just above the interface. The color scale indicates the mass density in units of g cm⁻³.

Alexakis et al., ApJ, 602 (2004)

FIG. 2.—Mass fraction of ¹²C for $\delta/H = 0.04$ after $t = 3500\delta/U$. The vertical dimension is scaled to the pressure scale height H as evaluated just above the interface. The contours for ¹²C mass fractions are, from top to bottom, 0.02, 0.20, and 0.49.

Alexakis et al., ApJ, 602 (2004)

FIG. 4.—Kippenhahn diagram of a nova without enrichment. The x-axis indicates time intervals for the different evolution stages, and the y-axis gives the mass above the C/O WD substrate. Green hatching (framed by a green line) indicates convection, blue shading indicates nuclear energy generation, for which each level of darker blue denotes an increase by 1 order of magnitude, starting at 10^{10} ergs g^{-1} s⁻¹. The thick black line shows the total mass of the star (including ejecta), increasing through accretion; the dash-dotted line indicates the mass outside of 10^{12} cm; and the dashed line marks the interface between the C/O WD substrate and the accreted layers.

White dwarfs are the endpoints of the stellar evolution of stars with masses below 11-12 $\rm M_{\odot}.$

> M \leq 8-10 M $_{\odot} \rightarrow$ CO white dwarfs (He burning)

> 8-10 $M_{\odot} \le M \le 12 M_{\odot} \rightarrow ONe$ white dwarfs (C burning)

 $10 \text{ M}_{\odot} \rightarrow 1.2 \text{ M}_{\odot}$ ONe core

FIG. 7.—Abundances by mass of the major isotopes in the heliumexhausted interior at the end of the carbon-burning phase $(t = 7.1895212 \times 10^{14} \text{ s}).$

Ritossa, García-Berro & Iben, 1996, ApJ see also Domínguez, Tornambè & Isern 1993 10M_☉ mass Population I star evolved from the Hburning main sequence through carbon burning

1.2M_o ONe core

≠

ONeMg core predicted by hydrostatic C-burning (Arnett & Truran, 1969)

Gil Pons, García-Berro, José, Hernanz & Truran, 2003, A&A Size of the CO core at the beginning of C burning, for single and binary evolution

Mass point at which C is ignited

Minimum mass required for C-ignition to take place (*): 8.1 M_{\odot} (single) and 8.7 M_{\odot} (binary)

Off-center C-ignition

Central C ignition: $\begin{cases}
11 M_{\odot} \text{ for single evolution} \\
12 M_{\odot} \text{ for binary evolution}
\end{cases}$

ONe core mass with a "CO buffer" (binary evolution)

$M_{\rm ZAMS}$	$M_{\rm ONe}$	$M_{\rm ONe+\Delta CO}$
9.3	1.00	1.07
10.0	1.05	1.09
10.5	1.14	1.15
11.0	1.21	1.22
11.5	1.30	1.31
12.0	1.33	1.33

Gil-Pons, García-Berro, José, Hernanz, Truran, 2003, A&A

7ig.3. Size of the final cores as a function of the ZAMS mass for ingle and binary star evolution.

Size of the final core for single and binary evolution: relevance of new M_{initial}-M_{final} mass relation for the fraction of novae hosting ONe white dwarfs: smaller number but still around 30%

Fig. 6. Number abundances of the CO core resulting from $9 M_{\odot}$ ZAMS primary component in a CBS.

Fig. 5. Number abundances of the uppermost regions of an ONe white dwarf resulting from the evolution of a 10 M_{\odot} ZAMS primary component in a close binary system.

"CO buffer" on top of an ONe core (Gil-Pons et al., 2003, A&A)

CO buffer on top of ONe core: weird nuclesoynthesis potentially leading to missclassification of novae

José, Hernanz, García-Berro, Gil-Pons, 2003, ApJL

Relevance of CO buffer on top of ONe WD for nova nucleosynthesis: lack of Ne in the ejecta: misclassification of novae (non-Ne nova \neq CO nova)

Results of the Evolut	TION OF 1.25 M	I_{\odot} ONe White	e Dwarfs
Parameter	А	В	С
$X(^{12}C)_{initial}$	6.1 (-3)	6.0 (-2)	0.23
$X(^{16}O)_{initial}$	0.26	0.28	0.26
X(²⁰ Ne) _{initial}	0.16	0.10	8.1 (-4)
$\Delta M_{\rm env} (10^{-3} M_{\odot}) \dots$	2.20	1.54	1.23
$t_{\rm rise} (10^{\rm s} {\rm s}) \ldots \ldots$	121	33.7	2.54
t _{max} (s)	313	134	45
$T_{peak} (10^8 \text{ K}) \dots$	2.51	2.31	2.22
\dot{K}_{eiec} (10 ⁴⁵ ergs s ⁻¹)	1.52	1.13	1.04
$\Delta M_{\rm eiec} (10^{-5} M_{\odot}) \dots$	1.79	1.25	1.00
X(¹ H)	0.28	0.29	0.29
<i>X</i> (⁴ He)	0.22	0.21	0.18
X(⁷ Li)	7.7 (-7)	8.4 (-6)	1.1 (-5)
X(¹² C)	2.4(-2)	3.0(-2)	4.7 (-2)
X(¹³ C)	3.3(-2)	4.1(-2)	7.3 (-2)
X(¹⁴ N)	3.9(-2)	3.9(-2)	1.1(-1)
X(¹⁵ N)	4.3(-2)	5.2(-2)	6.8(-2)
X(¹⁶ O)	6.8 (-2)	1.3 (-1)	1.9 (-1)
X(¹⁷ O)	5.5 (-5)	5.5 (-5)	5.5 (-5)
X(¹⁸ F) ^a	2.8(-4)	3.4(-4)	3.0 (-4)
X(²⁰ Ne)	1.7 (-1)	1.2(-1)	9.4 (-4)
X(²² Na)	3.3 (-4)	2.2(-4)	9.3 (-7)
X(²⁶ Al)	6.0 (-4)	6.0 (-4)	3.7 (-4)
X(²⁸ Si)	5.8 (-2)	4.4 (-2)	6.6 (-3)
X(²⁹ Si)	1.1(-3)	4.8 (-4)	4.4 (-5)
<i>X</i> (³⁰ Si)	6.3 (-3)	1.3 (-3)	4.7 (-5)

TADLE 1

" The mass fraction of the radioactive isotope $^{18}{\rm F}$ is given at 40 minutes after $T_{\rm peak}$

José, Hernanz, García-Berro, Gil-Pons, 2003, ApJL

- Scenario of nova explosions: thermonuclear runaway Mixing between core and envelope material
- Properties of the underlying white dwarf: CO and ONe
- Theoretical models: general predictions as compared with observations
- Relevance of nucleosynthesis in classical novae:
 - chemical evolution of the Galaxy
 - presolar meteoritic grains
 - gamma-ray emission

Nova models : general properties

Parameter	CO1	CO2	CO3	CO4	C05	CO6	CO7 ^a
$M_{\rm wd} (M_{\odot})$ Mixing (%)	0.8 25	0.8 50	1.0 50	1.15 25	1.15 50	1.15 75	1.15 50
$\Delta M_{\rm cnv} (10^{-5} M_{\odot})$	9.7 3.1	8.8	3.9	2.1	1.8	1.8	0.9
$t_{\text{rise}} (10^{\circ} \text{ yr})$ $t_{\text{rise}} (10^{\circ} \text{ s})$	2.8	1.8	1.1	0.43	0.72	0.48	1.7
$\frac{\epsilon_{\text{max}}}{T_{\text{max}}} (10^8 \text{ K}) \dots \dots$	1.45	1.51	1.70	2.03	2.05	2.08	1.73
$M_{\rm ejec} (10^{-5} M_{\odot})$	454 7.0	199 6.4	152 2.3	14/	65 1.3	51 1.3	200
$v_{ejec} (km s^{-1}) \dots K (10^{+3} ergs) \dots$	800 0.6	1200 1.1	1900 0.9	2200 0.8	2700 1.0	2900 1.3	2700 0.45

José & Hernanz, 1998, ApJ

Parameter	ONe1	ONe2	ONe3	ONe4	ONe5	ONe6	ONe7
$M_{\rm wd} (M_{\odot})$	1.00	1.15	1.15	1.15	1.25	1.35	1.35
Mixing (%)	50	25	50	75	50	50	75
$\Delta M_{env} (10^{-5} M_{\odot}) \dots t_{acc} (10^{5} \text{ yr}) \dots t_{cim} (10^{6} \text{ s}) \dots t_{cim} (10^{6}$	6.4	3.2	3.2	3.5	2.2	0.54	0.58
	3.3	1.9	1.9	2.1	1.3	0.31	0.33
	20	46	13	11	6.8	2.5	2.1
$\epsilon_{\text{nuc max}} (10^{16} \text{ ergs } \text{g}^{-1} \text{ s}^{-1})$	0.29	0.36	0.76	2.4	2.1	19	14
$t_{\max} (s) \dots \dots$	768 4.7	828 2.3	540 1.9	305 2.6	380 1.4	150 0.44	108 0.34
$v_{ejee} (\text{km s}^{-1}) \dots K (10^{+3} \text{ ergs}) \dots$	1600	2100	2400	2500	3100	4100	6000
	1.3	1.1	1.2	1.9	1.4	0.9	1.3

José & Hernanz 1998

Nova models : general properties

JINA Workshop Novae and SNIa, 20-21 May 2005, KITP, UCSB

Nova models: main nuclear reactions

	ELEMENT							
MODEL	Н	He	с	N	0	Ne	Na–Fe	z
V693 CrA 1981								
Vanlandingham et al. 1997 Model ONe3 Andreä et al. 1994 Model ONe4	0.25 0.30 0.16 0.12	0.43 0.20 0.18 0.13	0.025 0.051 0.0078 0.049	0.055 0.045 0.14 0.051	0.068 0.15 0.21 0.28	0.17 0.18 0.26 0.26	0.058 0.065 0.030 0.10	0.32 0.50 0.66 0.75
Model ONe5	0.29	0.32	0.0046 0.060	0.080 0.074	0.12 0.11	0.17 0.18	0.016 0.071	0.39
V1370 Aql 1982								
Andreä et al. 1994 Model ONe7 Snijders et al. 1987 Model ONe7	0.044 0.073 0.053 0.073	0.10 0.17 0.088 0.17	0.050 0.051 0.035 0.051	0.19 0.18 0.14 0.18	0.037 0.14 0.051 0.14	0.56 0.24 0.52 0.24	0.017 0.14 0.11 0.14	0.86 0.76 0.86 0.76
		QU	Vul 1984					
Austin et al. 1996 Model ONe1 Saizar et al. 1992 Model ONe2	0.36 0.32 0.30 0.47	0.19 0.18 0.60 0.28	0.030 0.0013 0.041	0.071 0.034 0.018 0.047	0.19 0.20 0.039 0.037	0.18 0.18 0.040 0.090	0.0014 0.062 0.0049 0.0035	0.44 0.50 0.10 0.25
		PW	Vul 1984					
Andreä et al. 1994 Model CO4	0.47 0.47	0.23 0.25	0.073 0.073	0.14 0.094	0.083 0.10	0.0040 0.0036	0.0048 0.0017	0.30 0.28
		V168	8 Cyg 1978					
Andreä et al. 1994 Model CO4 Stickland et al. 1981 Model CO1	0.45 0.47 0.45 0.51	0.22 0.25 0.23 0.21	0.070 0.073 0.047 0.048	0.14 0.094 0.14 0.096	0.12 0.10 0.13 0.13	0.0036 0.0068 0.0038	0.0017	0.33 0.28 0.32 0.28

José & Hernanz, 1998, ApJ

MODELS VERSUS OBSERVATIONS OF SOME CLASSICAL NOVA SYSTEMS

JINA Workshop Novae and SNIa, 20-21 May 2005, KITP, UCSB

- Scenario of nova explosions: thermonuclear runaway Mixing between core and envelope material
- Properties of the underlying white dwarf: CO and ONe
- Theoretical models: general predictions as compared with observations
- Relevance of nucleosynthesis in classical novae:
 - chemical evolution of the Galaxy
 - presolar meteoritic grains
 - gamma-ray emission

Nova Nucleosynthesis and chemical evolution of the Galaxy

 M_{eiec} (theor.) ~ 2x10⁻⁵ M_o/nova

R(novae) ~ 35 novae/yr

Age of the Galaxy ~ 10^{10} yrs

 $M_{ejec,total}(novae) \sim 7x10^{6} M_{\odot} = (7x10^{-4} M_{\odot}/yr) \approx 1/3000 M_{gal}(gas+dust)$

Novae can account for the galactic abundances of the isotopes they overproduce (w.r.t. sun) by factors \geq 3000

Novae nucleosynthesis: overproductions w.r.t. solar

JINA Workshop Novae and SNIa, 20-21 May 2005, KITP, UCSB

Novae nucleosynthesis: overproductions w.r.t. solar

JINA Workshop Novae and SNIa, 20-21 May 2005, KITP, UCSB

Novae nucleosynthesis: overproductions w.r.t. solar

JINA Workshop Novae and SNIa, 20-21 May 2005, KITP, UCSB

Nova nucleosynthesis and Galactic evolution of the CNO isotopes MNRAS, 2004

Donatella Romano^{1,2} and Francesca Matteucci³

¹International School for Advanced Studies, SISSA/ISAS, Via Beirut 2-4, I-34014 Trieste, Italy ²INAF, Osservatorio Astronomico di Bologna, Via Ranzani 1, I-40127 Bologna, Italy; romano@bo.astro.it ³Dipartimento di Astronomia, Università di Trieste, Via G.B. Tiepolo 11, I-34131 Trieste, Italy; matteucci@ts.astro.it

In this paper, we adopt detailed nucleosynthesis in the ejecta of classical novae as published by José & Hernanz (1998) for a grid of hydrodynamical nova models spanning a wide range of CO and ONe WD masses $(0.8-1.35 M_{\odot})$ and mixing levels between the accreted envelope and the outermost shells of the underlying WD core (25% - 75%). We find that, when included in a detailed model for the chemical evolution of the Milky Way, they produce ${}^{12}\text{C}/{}^{13}\text{C}$, ${}^{14}\text{N}/{}^{15}\text{N}$ and ${}^{16}\text{O}/{}^{17}\text{O}$ ratios decreasing with increasing metallicity, i.e., decreasing with time at the solar radius and increasing with Galactocentric distance at the present time, in agreement with the trends inferred from observations. However, if novae are

CNO: ¹³C, ¹⁵N, ¹⁷O

Astron. Astrophys. 352, 117-128 (1999)

The galactic lithium evolution revisited*

D. Romano^{1,2}, F. Matteucci^{3,1}, P. Molaro², and P. Bonifacio²

¹ SISSA/ISAS, Via Beirut 2-4, 34014 Trieste, Italy

² Osservatorio Astronomico di Trieste, Via G.B. Tiepolo 11, 34131 Trieste, Italy

³ Dipartimento di Astronomia, Università di Trieste, Via G.B. Tiepolo 11, 34131 Trieste, Italy

Received 26 April 1999 / Accepted 5 October 1999

In order to reproduce the upper envelope of the A(Li) vs [Fe/H] diagram we need to take into account several stellar Li sources: AGB stars, Type II SNe and novae. In particular, novae are required to reproduce the steep rise of A(Li) between the formation of the Solar System and the present time, as is evident from the data we sampled. On the other hand, ⁷Li yields for SNeII should be lowered by at least a factor of two in order to reproduce the extension of the Spite plateau.

⁷Li

- Scenario of nova explosions: thermonuclear runaway Mixing between core and envelope material
- Properties of the underlying white dwarf: CO and ONe
- Theoretical models: general predictions as compared with observations
- Relevance of nucleosynthesis in classical novae:
 - Chemical evolution of the Galaxy
 - Presolar meteoritic grains
 - gamma-ray emission

Dust in novae

IR observations indicate that dust grains are formed in many novae

Nova Cyg 1978

IR observations: dust formation

				_		
		V_{a}			$M_{_{ m gas}}$	$M_{\rm dust}$
Nova	Year	(km s ⁻¹)	Types of Dust Formed ^ь		$(\dot{M_{\odot}})$	(M_{\odot})
FH Ser	1970	560	С			
V1229 Aql	1970	575	С			
V1301 Aql	1975		С	E		
V1500 Cyg [*]	1975	1180			$0.05 - 8 \times 10^{-4}$	
NQ Vul	1976	750	С		10^{-4}	2×10^{-7}
V4021 Sgr	1977		С			
LW Ser	1978	1250	С		2×10^{-5}	3.6×10^{-7}
V1668 Cyg	1978	1300	С		2×10^{-5}	2×10^{-8}
V1370 Aql ^d	1982	2800	C; SiC; SiO ₂			
GQ Mus	1983	600	No dust		$\leq 2.6~ imes~10^{-6}$	
PW Vul	1984 #1	285	С		$\leq 3.2 \times 10^{-6}$	5.1×10^{-10}
QU Vul*	1984 #2	1-5000	SiO_2		3×10^{-4}	10^{-3}
OS Andas	1986	900	C?			
V1819 Cyg*	1986	1000	No dust			
V842 Cen	1986	1200	C; SiC; HC			
V827 Her*	1987	1000	С			
V4135 Sgr	1987	500				
QV Vul	1987	700	C; SiO ₂ , HC; SiC		3×10^{-5}	3.4×10^{-8}
LMC 1988 #1	1988 #1	800	C?			
LMC 1988 #2	1988 #2	1500				
V2214 Oph	1988	500				
V838 Her	1991	3500	С		$0.9-6.4 \times 10^{-4}$	3×10^{-5}
V1974 Cyg [*]	1992	22.50	No dust		$2-5 \times 10^{-4}$	
V705 Cas	1993	840	C; HC; SiO ₂		$1-1.3 \times 10^{-5}$	2×10^{-6}
Aql 1995"	1995	1510	С			

JINA

-lernanz

Novae and presolar meteoritic grains

Primitive meteorites contain presolar grains, which condensed in stellar atmospheres or in supernova or nova ejecta, and survived their "interstellar trip" and solar system formation

Isotopic abundances measurements in lab allow to ascertain their origin

Novae and presolar meteoritic grains

Five SiC and two graphite grains from the Murchison and Acfer 094 meteorites show isotopic compositions indicating a nova origin: Amari, Gao, Nittler, Zinner, José, Hernanz & Lewis (2001); José, Hernanz, Amari, Lodders & Zinner (2004)

Novae and presolar meteoritic grains

- Scenario of nova explosions: thermonuclear runaway Mixing between core and envelope material
- Properties of the underlying white dwarf: CO and ONe
- Theoretical models: general predictions as compared with observations
- Relevance of nucleosynthesis in classical novae:

chemical evolution of the Galaxy
presolar meteoritic grains
gamma-ray emission

Why	nova	ae en	nit ga	mma-ra	iys?
Explosive	H-burn	ing: syn	thesis o	of β+-unstab	le nuclei
	13	¹⁴ C	150	¹⁷ F ¹⁸ F	
	τ 80	62s 102	2s 176s	93s 158m	in.
		cru lop	ucial for en be expans	nve-	
		crucial fo (through	or γ-ray en e⁻-e⁺ ann	nission ihilation)	
Other	7	Ве	²² Na	²⁶ AI	
radioactive	τ 7	7days	3.75yrs	10 ⁶ yrs	
nuclei synthesized	line 47	78keV	1275ke	V 1809ke	/
Synthesized	e-ca	pture	e+-e	emission	

Main radioactive isotopes synthesized in classical novae

Nucleus	τ	Type of emission	Nova type
¹³ N	862 s	<pre>{ 511 keV line continuum (E<511 keV)</pre>	CO and ONe
¹⁸ F	158 min	<pre>511 keV line continuum (E<511 keV)</pre>	CO and ONe
⁷ Be	77 days	478 keV line	CO mainly
²² Na	3.75 yr	1275 keV line	ONe
²⁶ AI	1.0X10 ⁶ yr	1809 keV line	ONe

Spectra of CO novae

 e⁺ annihilation and Comptonization → continuum and 511 keV line; e⁺ from ¹³N and ¹⁸F

predicted theoretically by Clayton & Hoyle 1974; Leising & Clayton 1987

- photoelectric absorption
 cutoff at 20 keV
- 478 keV line from ⁷Be decay
- transparent at 48 h

Gómez-Gomar, Hernanz, José, Isern, 1998, MNRAS

Spectra of ONe novae

 $M_{WD} = 1.15 M_{\odot} \text{ (solid)}$ 1.25 $M_{\odot} \text{ (dotted)}$

- photoelectric absorption cutoff at 30 keV
- continuum and 511 keV as in CO novae
- 1275 keV line from ²²Na decay
- similar behaviour for the 2 models, because of similar KE and yields

Gómez-Gomar, Hernanz, José, Isern, 1998, MNRAS

Light curves: 1275 keV (²²Na) line

t_{max}: 20 days (1.15M_☉),12 days (1.25 M_☉), line width ~ 20 keV; duration: months Flux (max) ~ 2x10⁻⁵ ph/cm²/s; M_{ejected}(²²Na) ~ (6-7)x10⁻⁹M_☉ → predicted theoretically by Clayton & Hoyle, 1974 JINA Workshop Novae and SNIa, 20-21 May 2005, KITP, UCSB

Light curves: 478 keV (⁷Be) line

Only in CO novae t_{max} : 13 days (0.8M_o) 5 days (1.15 M_o) duration: some weeks $Flux \sim (1-2)x10^{-6} ph/cm^{2}/s$ $M_{eiected}(^{7}Be) \sim (0.7-1.1) \times 10^{-10} M_{\odot}$ Line width: 3-7 keV

predicted theoretically by Clayton 1981

Prospects for detectability with INTEGRAL/SPI

Table 1. SPI 3σ detectability of ⁷Be (478 keV) and ²²Na (1275 keV) lines from classical novae^{*}

Line (E Δ E,keV)	${ m t_{obs}(ks)}$	$F_{min} (ph/cm^2/s)$	d(kpc)
478 (8)	10^{3}	$7.98 imes10^{-5}$	0.16
478(8)	$1.2 imes10^3$	$7.28 imes10^{-5}$	0.17
478(8)	$2.4 imes10^3$	$5.15 imes10^{-5}$	0.20
1275~(20)	10^{3}	$7.28 imes10^{-5}$	0.52
1275~(20)	$1.2 imes10^3$	$6.64 imes10^{-5}$	0.55
1275 (20)	$2.4 imes10^3$	$4.70 imes10^{-5}$	0.65

* F_{min} are the fluxes which would give a 3σ detection of the lines, with the quoted observation times, which have been computed with the Observation Time Estimator for INTEGRAL *OTE*. The detectability distances have been computed adopting as model fluxes for the 478 keV and 1275 keV lines, at 1 kpc, 2×10^{-6} and 2×10^{-5} ph/cm²/s, for a typical CO and ONe nova, respectively (see Gómez-Gomar et al. (1998); Hernanz et al. (1999)).

Width of the lines fully taken into account Future missions: MAX (γray lens), ACT (Advanced Compton Telescope)

Light curves: 511 keV line

Model	t _{max} * (h)	F _{max} (ph/cm ² /s)**		
CO, 0.8 M _⊙		2.6 x 10 ⁻⁵		
CO, 1.15 M _o	6.5	5.3 x 10 ⁻⁴		
ONe, 1.15 M _o	6	1.0 x 10 ⁻³		
ONe, 1.25 M _⊙	5	1.9 x 10 ⁻³		

 511 keV line in ONe novae remains after 2 days until ~
 1 week because of e⁺ from
 ²²Na

- Intense (but short duration)
- Very early appearence, before visual maximum (i.e, before discovery)

Gamma-ray and visual light curves

Visual maximum later than 511 keV and continuum maxima

The continuum and the 511 keV line, e^--e^+ annihilation, are the most intense γ -ray emissions, but their duration is very short and they appear before visual discovery

 detection requires "a posteriori" analyses with wide FOV instruments (BATSE, TGRS, RHESSI)

 future hard X/soft γ-ray surveys like
 EXIST can provide unique information about the Galactic nova distribution

Galactic distribution of γ -ray emission from novae

Theoretical predictions: Jean, Hernanz, Gómez-Gomar, José, 2000, MNRAS Observations (upper limits): Leising et al. 1988, Harris et al 1991, 1996

²⁶Al ejected masses by ONe novae Nuclear uncertainties

WD mass	Minimum	Best	Maximum	Max/Min	
1.15	8.6·10 ⁻⁹	$2.1 \cdot 10^{-8}$	3.1.10-8	3.6	
1.25	3.6·10 ⁻⁹	$1.2 \cdot 10^{-8}$	1.6·10 ⁻⁸	4.4	
1.35	$6.6 \cdot 10^{-10}$	3.2·10 ⁻⁹	$4.8 \cdot 10^{-9}$	7.3	
(all in M _☉)	M _☉) José, Coc and Hernanz 1999, ApJ				

Contribution of novae to Galactic ²⁶Al: $M(^{26}AI) \approx 2.0 M_{\odot} * M_{ej}(^{26}AI)/(10^{-7} M_{\odot}) * R_N/(35 \text{ yr}^{-1}) * f_{ONe}/0.5 \sim 0.4 M_{\odot}$ < $M(^{26}AI)$ from CGRO/COMPTEL 1809 keV map

Need of more sensitive intruments

Future missions

MAX (γ-ray lens),
 ACT (Advanced Compton Telescope)

Why focusing γ-rays?

from Peter von Ballmoos, CESR, Toulouse

How to focus γ -rays?

http://www.cesr.fr/~pvb/Claire/index.html

JINA Workshop Novae and SNIa, 20-21 May 2005, KITP, UCSB

gamma-ray lens for nuclear astrophysics

ttp://www.cesr.fr/~pvb/Claire/index.html

Is the lens performing as expected for sources at infinity?

JINA Workshop Novae and SNIa, 20-21 May 2005, KITP, UCSB

From CLAIRE to MAX (space mission)

JINA Workshop Novae and SNIa, 20-21 May 2005, KITP, UCSB

D

Summary

• White dwarf mass and chemical composition are not independent variables: CO (M<8-10 M_{\odot}) and ONe ((8-10) M_{\odot} <M< 12 M_{\odot}).

Need of core-envelope mixing to explain both the explosion itself and the observed ejecta abundances. Not self-consistent mechanism found to date.

 Observational diagnostics of nova nucleosynthesis: particular novae, isotopic abundances in meteorites, chemical evolution of the Galaxy, gamma-ray emission. Gamma-rays could provide infomation about the distribution of novae in the Galaxy, avoiding the problem of interstellar extinction.