

# Modeling Turbulent Burning in Type Ia Supernova Simulations

JINA workshop KITP Santa Barbara, 21 May 2005



W. Hillebrandt, M. Reinecke, C. Travaglio, J. Niemeyer, W. Schmidt, L. Iapichino, M. Stehle, P. Mazzali



## **Astrophysical scenario**



favored astrophysical model: thermonuclear explosion of a white dwarf star







- pure detonation would produce wrong composition of explosion products (Arnett, 1969)
- flame starts out as deflagration (Nomoto et al.)
- problem: laminar deflagration flame too slow
- main issue: acceleration of flame propagation

# SNe Ia as problem of turbulent combustion

- interaction of flame with turbulence  $\rightarrow$  turbulent combustion
- generic instabilities:



estimate Re around RT-bubble: L  $\sim$  10<sup>7</sup> cm, v<sub>shear</sub>  $\sim$  10<sup>7</sup> cm s<sup>-1</sup>  $\rho \sim$  10<sup>9</sup> g cm<sup>-3</sup>,  $\eta \sim$  10<sup>9</sup> g cm<sup>-1</sup> s<sup>-1</sup>

```
ightarrow Re \sim 10^{14}
```

formation of turbulent energy cascade

- ▶ wrinkling of the flame front  $\rightarrow$  flame surface  $\uparrow \rightarrow$  net burning rate  $\uparrow \rightarrow$  flame propagation strongly accelerated
- later transition to (supersonic) detonation?

## **Lessions from engineering**

• turbulent burning velocity of the flame  $\rightarrow$  from mass flux conservation:



Regimes of turbulent
 combustion (e.g. Peters, 2000)



$$\frac{s_{\top}}{s_{\mathsf{L}}} = \frac{A_{\top}}{A}$$



JINA Santa Barbara, 05/21/2005

Friedrich Röpke, Max-Planck-Institut für Astrophysik

## **Lessions from engineering**



- flame corrugated on large scales (interaction purely kinematic)
- internal sturcutre unaffected by turbulence
- Damköhker (1940):

$$\frac{A_{\mathsf{T}}}{A} \sim \frac{v'}{s_l} \quad \longrightarrow \quad s_{\mathsf{T}} \sim v'$$

Transition to distributed burning:

#### thin reaction zones

- turbulence modifies transport between reaction zone and fuel
- Damköhler (1940): from  $s_{\sf L} \sim \sqrt{D/t_{\sf C}}$

$$\frac{s_{\rm T}}{s_{\rm L}} \sim \sqrt{\frac{D_{\rm T}}{D}} \quad \longrightarrow \quad s_{\rm T} \sim \sqrt{\frac{s_{\rm L} v' l}{l_{\rm F}}}$$



### Simulating the relevant scales

• Gibson scale  $s_{lam} = v' \rightarrow$  below turbulence does not affect flame propagation



# **Numerical techniques**

explosion model (Reinecke et al., 1999, 2002)  $\rightarrow$  Large Eddy Simulation approach

- ► hydrodynamics: finite volume approach → PROMETHEUS (Fryxell et al., 1989) implementation of PPM (Colella & Woodward, 1984)
- turbulence on unresolves scales implemented via sub-grid scale model
- ▶ flame model: WD ~  $10^8$  cm structure of flame ~ 1mm → not resolvable → modeled as discontinuity between fuel and ashes
- level set method

- "flamelet regime" of combustion: turbulent flame propagation velocity determined from sub-grid scale model
- simplified description of nuclear reactions, nuclear postprocessing step (Travaglio et al., 2004)





- simplified description of nuclear burning (Reinecke, 2002):
  - ▶ include 5 species: <sup>12</sup>C, <sup>16</sup>O, "Mg"  $\rightarrow$  intermediate mass elements, "Ni"  $\rightarrow$  iron group elements,  $\alpha$ -particles
  - $\blacktriangleright$  at high  $\rho_{\text{fuel}}$  burn to NSE consisting of "Ni" and  $\alpha$
  - $\blacktriangleright$  for  $\rho_{fuel} < 5.25 \times 10^7 \mbox{ g cm}^{-3} \mbox{ burn to "Mg"}$
  - for  $\rho_{fuel} < 1 \times 10^7$  g cm<sup>-3</sup> burning is no longer followed

### nucleosynthesis postprocessing (C.Travaglio, 2004, M. Gieseler)

- record evolution of density, energy, temperature by tracer particles equally distributed in mass shells (Lagrangian component in Eulerian explosion code)
- use tracer information to perform nuclear postprocessing with nuclear reaction network (384 isotopes) provided by F.K. Thielemann

# Large-scale simulations



### **Flame evolution**





### t = 0/100 s

Friedrich Röpke, Max-Planck-Institut für Astrophysik

### **Application of models**



study multi-spot ignition scenarios (Röpke et al., in prep.)



JINA Santa Barbara, 05/21/2005

Friedrich Röpke, Max-Planck-Institut für Astrophysik

### **Status of modeling**

synthetic light curves:



"best model" (b30, M. Reinecke, 2003): 0.4 M<sub>o</sub> of <sup>56</sup>Ni, 0.7 foe

### **Problem: nebular spectra**





#### thin reaction zones regime?

► as long as flame thickness ≪ integral scale of turbulence: flame on large scales still dominated by turbulence leading to corrugated flamelet regime with modified microphysics → still following flamelet scaling



very late stages → ractions slow, flame thickness large → volume burning??? → depends on turbulence freeze-out due to expansion



- deflagrations in type Ia supernova explosions: problem of turbulent combustion
- LES approach suitable for simulations
- reasonable agreement with observations in global quantities (energy, <sup>56</sup>Ni production), though on weak side
- cure low velocity unburnt material problem:
  - increase resolution
  - improve sub-grid scale model ( $\rightarrow$  W. Schmidt)
  - burning in late phases
  - test initial flame configurations  $\rightarrow$  multi-spot ignition
  - delayed detonation?

► ...