Mass measurements for nuclear astrophysics Lecture 1: introductory physics and methods

David Lunney

Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse (CSNSM – IN2P3 / CNRS) Université de Paris Sud, Orsay

Joint Institute for Nuclear Astrophysics Special School on Nuclear Mass Models Argonne National Laboratory - May 8-16, 2007

- I. General concepts binding energy; the mass unit; resolution; precision; accuracy
- II. Physics motivation
 - a nuclear structure shells, deformation, pairing, halos (the mass scale)
 - b weak interaction superallowed beta decay and the CKM matrix
 - c astrophysics stellar nucleosynthesis
- III. Production of radionuclides methods of FIFS (fragmentation) et ISOL; (ion manipulation using traps and gas cells)
- IV. Mass measurement techniques
 - i. indirect methods reactions et decays
 - ii. direct methods time of flight (SPEG et CSS2 au GANIL; ESR isochronous mode at GSI); revolution (cyclotron) frequency (ESR Schottky mode; ISOLTRAP and MISTRAL at ISOLDE)
 - V. Comparisons of the different methods
- VI. The atomic mass evaluation (demonstration of the program NUCLEUS)
- VII. Mass models and comparisons; chaos on the mass surface?
- VIII. A look into the future
 - IX. Conclusions

Some introductory remarks on history

High resolution mass spectrographs

F.W.Aston (~1920's): 212 isotopes discovered Packing fraction

A. Eddington (~1920) Stellar combustion

$$E = mc^2$$

How the sun shines," J. Bahcall http://nobelprize.org/physics/

the atomic mass

nuclear structure (shells, shapes, halos) nuclear astrophysics (decay mode, reaction)

rapid proton-capture (rp) process

----- possible rp - process main path

(H. Schatz et al. Phys. Rep. 294 (1998) 167)

possible waiting points

mass excess not yet measured (AME95)

ISOLTRAP measurements

2000 - 2002

before 2000

(*A* = 100 isobars)

nuclear structure from the mass surface

nuclear structure from the mass surface

shell opening and magic number migration

 S_{2n} (MeV)

Ν

drip line phenomena - small binding energies

					¹⁸ Na	¹⁹ Na	20 _{Na}	²¹ Na	²² Na	²³ Na	DECAY MODES P+ (e+ & e-Capture
				¹⁶ Ne	¹⁷ Ne	¹⁸ Ne	¹⁹ Ne	²⁰ Ne	²¹ Ne	²² Ne	∎ p- □ α □ Internal Transitio
			14 _F	15F	16F	17F	18F	19F	20F	21F	D Spontaneous Fissic ■ p ■ n Ctockle cool:de
		12 ₀	13 <mark>0</mark>	140	150	160	170	180	19 ₀	200	□ Stable Nuclide □ Unknown decay 90 Nuclides
	10 _N	11 _N	12 _N	13 _N	14 _N	15 _N	16 _N	17 _N	18 _N	19 _N	13 Carbon 2:6 N:7
sС	эC	10 _C	11 _C	12 _C	13 _C	14 _C	15C	16 ₀	17 _C	18 _C	Base: NUBASE Parity (Z,N): all
7 _B	8B	аB	10 _B	11 _B	12 _B	13B	14B	15B	16B	17 _B	DECAY CHNS OPTIONS NODEL HELP COLODS TUMP
ĕBe	⁷ Be	⁸ Be	э _{Ве}	¹⁰ Be	¹¹ Be	12 _{Be}	13 _{Be}	¹⁴ Be			GLOBAL PRINT
⁵ Li	۶Li	7∟i	⁸ Li	9Li	¹⁰ Li	11Li	¹² Li				+
⁴He	⁵ He	бНе	⁷ He	⁸ He	⁹ He	¹⁰ He					
зн	⁴H	۶H	۴H								

Superlarge nuclides

 ^{11}Li

two-neutron halo

Borromean system

Simple, illustrative approach (Hansen and Jonson, 1987)

 $\rho = \hbar/(2\mu S_{2n})^{1/2}$

For 3-body models: S_{2n} is *input* parameter

Fig. 1. The T-set of Jacobi coordinates.

$$V_{nc}(r,\theta',\phi') = \frac{V_0}{1+e^{\frac{r-R(\theta',\phi')}{a}}} - 2\left(\frac{\hbar^2}{m_{\pi}c}\right)^2 \frac{V_{ls}}{r} \frac{d}{dr} \frac{1}{1+e^{\frac{r-R_{ws}}{a_{ws}}}} \mathbf{I} \cdot \mathbf{s}.$$

T. Tarutina et al. / Nuclear Physics A 733 (2004) 53-66

Hancock bldg (344 m high)

Earth's radius: 6000 km

Shell gap of ¹³²Sn ~ 6 MeV

Binding Energy of ¹³²Sn ~ 1 GeV

Pairing gap: 1 MeV

mass measurements: what you want - what you need

BRIEF COMMUNICATIONS

A direct test of $E = mc^2$

One of the most striking predictions of Einstein's special theory of relativity is also perhaps the best known formula in all of science: $E = mc^2$. If this equation were found to be even slightly incorrect, the impact would be enormous — given the degree to which special relativity is woven into the theoretical fabric of modern physics and into everyday applications such as global positioning systems. Here we test this mass-energy relationship directly by combining very accurate measurements of atomic-mass difference, Δm , and of γ -ray wavelengths to determine *E*, the nuclear binding energy, for isotopes of silicon and sulphur. Einstein's relationship is separately confirmed in two tests, which yield a combined result of $1 - \Delta mc^2/E = (-1.4 \pm 4.4) \times 10^{-7}$, indicating that it holds to a level of at least 0.00004%. To our knowledge, this is the most precise direct test of the famous equation yet described.

Our direct test is based on the prediction that when a nucleus captures a neutron and emits a γ -ray, the mass difference Δm between the initial (including unbound neutron) and final nuclear states, multiplied by c^2 (where *c* is the speed of light), should equal the energy of the emitted γ -ray(s), as determined from Planck's relation E = hf (where *h* is Planck's constant and *f* is frequency).

The total energy of the γ -rays emitted as

undergoing this nuclear reaction, the comparison is expressed in terms of measured quantities as

$$\Delta Mc^{2} = (M[^{A}X] - M[^{A+1}X] + M[D] - M[H])c^{2}$$

= 10³N_Ah(f_{A+1} - f_D) mol AMU kg⁻¹ (1)

where the Avogadro constant N_A relates the measured mass M[X] in unified atomic mass units (AMU) to its mass in kilograms m[X]. We made comparisons for ${}^{A+1}X = {}^{29}Si$ and ${}^{A+1}X = {}^{33}S$. The mass of the neutron M[n] is determined from the masses¹ of hydrogen M[H]and deuterium M[D] combined with f_D , the frequency of the γ -ray corresponding to the deuteron binding energy². The molar Planck constant is $N_A h = 3.990312716(27) \times 10^{-10}$ J s mol⁻¹; numbers in parentheses indicate uncertainty on the last digits. This figure has been independently confirmed at about the 5×10^{-8}

the daug decays to Simon Rainville*; James K. Thompson*, state was Edmund G. Myers:;, John M. BrownS, by sumn Maynard S. Dewey||, Ernest G. Kessler Jr||, vidual γ These w by wave Richard D. Deslattes ||, Hans G. Börner ¶, suremen Michael Jentschel[¶], Paolo Mutti[¶], Bragg The ma David E. Pritchard* Δm is *Research Laboratory of Electronics, simultan isons of MIT-Harvard Center for Ultracold Atoms, and frequenc proporti ||National Institute of Standards and Technology, mass) o Gaithersburg, Maryland 20899, USA initial a topes co ¶Institut Laue-Langevin, 38042 Grenoble Cedex, period of Penning trap. Because the diffraction angle for a 5-MeV

BETTMANN/CORBIS

Motivation from "fundamental" physics

the kilogram: ²⁸Si atomic mass standard and other fundamental constants (what if they vary with time?!)

NATURE 2589-26/5/2004-VBICKNELL-104661

metrology:

A precision measurement of the mass of the top quark

DØ Collaboration*

Figure 4 Determination of the mass of the top quark using the maximum-likelihood corresponds to a mass of 180.1 GeV/ c^2 , which is the new DØ measurement of $M_t \pm 3.6 \text{ GeV}/c^2$ statistical uncertainty of the fit.

NATURE | doi:10.1038/nature02589 | www.nature.com/nature

What does a relative uncertainty of 10⁻⁸ mean?

weight (empty): 164000 kg

contact lenses?

mass measurements: what you want - what you need

Production (and separation) techniques for exotic nuclides

worldwide radioactive ion beam facilities

ISOL thick-target facilities

in-flight separation facilities

MASS MEASUREMENTS

(NEAR) FUTURE

high resolution necessary but not sufficient for high precision

Available online at www.sciencedirect.com

International Journal of Mass Spectrometry 251 (2006) 119-124

www.elsevier.com/locate/ijms

Opportunistic mass measurements at the Holifield Radioactive Ion Beam Facility

P.A. Hausladen^{a,*}, J.R. Beene^a, A. Galindo-Uribarri^a, Y. Larochelle^b, J.F. Liang^a, P.E. Mueller^a, D. Shapira^a, D.W. Stracener^a, J. Thomas^c, R.L. Varner^a, H. Wollnik^a

accurate

...but not precise

...but not accurate

high precision necessary but not sufficient for high accuracy

Mass measurements by reactions

$$M_{B} = \{ M_{x}^{2} + M_{b}^{2} + 2E_{x}^{lab}E_{b}^{lab} - 2P_{x}^{lab}P_{b}^{lab} \}^{1/2}$$

Somewhat limited but imperative for unbound

masses of unbound nuclides using MAYA at GANIL

²⁶F (d,³He) ²⁵O reaction

²⁰ Ne	²¹ Ne	²² Ne	²³ Ne	²⁴ Ne	²⁵ Ne	²⁶ Ne	²⁷ Ne	²⁸ Ne	²⁹ Ne	³⁰ Ne
19F	20F	21F	22F	23F	24F	25F	26F	27F	28F	29F
180	19 <mark>0</mark>	200	21 ₀	220	23 <mark>0</mark>	240	250	260	27 ₀	280
17 _N	18 _N	19 _N	20 _N	21 _N	22 _N	23 _N	24 _N	25 _N		

C.-E. Demonchy Ph.D. (2003)

F

Mass measurements by alpha and proton decay

C.N. Davids et al., Hyp. Int. 132 (2001) 133

reactions and decays (so-called 'indirect' techniques)

Mass values for the most exotic species

mass measurement programs at GANIL

SPEG

resolving ~ 5000 sensitivity ~ 0.01 /s

NATIONAL SUPERCONDUCTING CYCLOTRON LABORATORY

⁸⁶Kr primary beam M. Matoš (CGS-12, Notre Dame) AIP Conf. Proc. 819 (2006) 164 A. Estrade (NiC-IX, CERN) Proceedings of Science (2006)

 $\Delta TOF[ns]$

mass measurement programs at GANIL

<u>CSS2</u> time-of-flight: phase difference with acceleration (longer flight path)

M.B. Gomez Hornillos, M. Chartier et al. (soon)

mass measurement programs at GANIL

-0.1

M.-B. Gomes Hornillos *et al.*, J. Phy. G 31 (2005) S1869

Multiple-Reflection TOF-MS

mass measurement accuracy (~ ppm) short measurement durations (< 1 ms)

Casares, Geissel, Plass, Scheidenberger, Wollnik et al. (Proc. 48th ASMS Conf. Mass Spectrom. Allied Topics, Long Beach, CA, 2000)

mass measurement programs at GSI

Experimental Storage Ring: $\Delta m/m = \gamma_t^2 \Delta f/f + (\gamma_t^2 - \gamma^2) \Delta v/v$

Schottky Mode very precise but cooling slow Isochronous Mode very fast but not so precise

mass measurement programs at GSI

Nuclear Physics in Storage Rings

Mass Measurements and Decay Studies in the ESR Reaction studies in the ESR

Yuri A. Litvinov Arbeitstreffen Kernphysik, Schleching 22 February 2007

Broad-band Schottky Frequency Spectra

Electron cooling of fast ion beams (CRYRING at MSI, Stockholm)

IMS: Time-of-Flight Spectra

Nuclei with half-lives as short as 20 microseconds are accessible

About 13% in mass-over-charge range

M. Hausmann et al., Hyperfine Interactions 132 (2001) 291

Measured Mass Surface

Present Knowledge of Atomic Masses

MISTRAL A new binding energy for the ¹¹Li halo

23% higher than currently used to adjust models...

C. Bachelet, Ph.D. thesis (2004)

The mass spectrometer **ISOLTRAP**

hyperbolic Penning trap: precision mass measurement

20 cm 1 m

cylindrical Penning trap: isobar separation & cooling

Gas-filled RF-Paul trap: universal beam collector

Penning Trap

 $\omega_c = qB/2\pi m$

 \mathcal{O}_{z} SHM

mass independent

 $\omega_c = \omega_+ + \omega_-$

in a quadrupole field

PROCEEDINGS OF SCIENCE

Nucleosynthesis in neutrino heated matter: The vp-process and the r-process

G. Martínez-Pinedo^{*}, A. Kelić, K. Langanke, K.-H. Schmidt Gesellschaft für Schwerionenforschung, D-64291 Darmstadt, Germany E-mail: g.martinez@gsi.de

D. Mocelj, C. Fröhlich, F.-K. Thielemann, I. Panov, T. Rauscher, M. Liebendörfer Department of Physics and Astronomy, University of Basel Klingelbergstrasse 82, CH-4056 Basel, Switzerland

N. T. Zinner

Institute for Physics and Astronomy, University of Arhus, DK-8000 Arhus C, Denmark

B. Pfeiffer

Institute for Nuclear Chemistry, University of Mainz Fritz-Strassmann-Weg 2, D-55128 Mainz, Germany

R. Buras and H.-Th. Janka

Max-Planc-Institut für Astrophysik, Karl-Schwarzschild-Strasse 1, D-85741 Garching, Germany

This manuscript reviews recent progress in our understanding of the n and heavy elements in supernovae. Recent hydrodynamical models of show that a large amount of proton rich matter is ejected under str matter constitutes the site of the v_P -process where antineutrino abs the nucleosynthesis of nuclei with A > 64. Supernovae are also ass responsible for the synthesis of the heaviest elements in nature. Fissic play a major role in determining the final abundance patter and in expl features seen in metal-poor r-process-rich stars.

International Symposium on Nuclear Astrophysics - Nuclei in the Cosmos 25-30 June 2006 CERN

APS/123-QED

M. Dworschak^{1*}, G. Audi², K. Blaum^{1,3}, P. Delahaye⁴, S. George^{1,3}, U. Hager⁵, F. Herfurth¹,
A. Herlert⁴, A. Kellerbauer⁶, H.-J. Kluge^{1,7}, D. Lunney², L. Schweikhard⁸, and C. Yazidjian¹
¹GSI, Planckstraße 1, 64291 Darmstadt, Germany
²CSNSM-IN2P3-CNRS, Université de Paris Sud, 91405 Orsay, France
³Johannes Gutenberg-Universität, Institut für Physik, 55099 Mainz, Germany
⁴CERN, Physics Department, 1211 Geneva 23, Switzerland
⁵University of Jyväskylä, Department of Physics, P.O. Box 35 (YFL), 40014 Jyväskylä, Finland
⁶Max Planck Institute for Nuclear Physics, P.O. Box 103980, 69029 Heidelberg, Germany
⁷Ruprecht-Karls-Universität, Institut für Physik, 69120 Heidelberg, Germany and
⁸Ernst-Moritz-Arndt-Universität, Institut für Physik, 17487 Greifswald, Germany
(Dated: May 8, 2007)

'the best of both worlds' $\rightarrow CPT$ at ANL

Canadian Penning Trap (CPT) facility at ANL

JYFLTRAP at the IGISOL facility in Jyväskylä

SHIPTRAP facility at GSI

Low Energy Beam & Ion Trap (LEBIT) facility at NSCL/MSU

G. Bollen EMIS/ENAM proceedings

Let's pause and catch our breath...

How do all these (different?) programs compare?

Are they really different? Are they complementary?

(no one facility has enough beam time... ...or students to analyze the data!)

<u>comparison of current (direct) mass measurement programs</u>

	SPEG	ESR	MISTRAL	ISOLTRAP
resolution	104	106	<i>10⁵</i>	107
precision	<i>10⁻⁵ - 10⁻⁶</i>	1-5 ×10-7	3-6 ×10-7	1-5 ×10-8
sensitivity	10 ⁻¹ /s	1	10 ³ /s	10²/s
half-life	1 µs	10 s	1 ms	50 ms
applicability	A < 70	universal	universal	universal
forte	exotic species	life-times	(ISOLDE) short $T_{1/2}$	(ISOLDE) highest
Achilles heel	μs-isomers	calibration	sys. error	meas. time
future	better timing CIME	isochronous mode $\rightarrow \mu$ s	cooler	ICR detection

Reviews of Modern Physics, 75 (2003) 1021

ENAM04 Proc., Eur. Phys. J. A, 25 (2005) 3

Proc. Nuclei in the Cosmos IX, PoS (2006)?

Ν

Ν

- I. General concepts binding energy; the mass unit; resolution; precision; accuracy
- II. Physics motivation
 - a nuclear structure shells, deformation, pairing, halos (the mass scale)
 - b weak interaction superallowed beta decay and the CKM matrix
 - c astrophysics stellar nucleosynthesis
- III. Production of radionuclides methods of FIFS (fragmentation) et ISOL; (ion manipulation using traps and gas cells)
- IV. Mass measurement techniques
 - i. indirect methods reactions et decays
 - ii. direct methods time of flight (SPEG et CSS2 au GANIL; ESR isochronous mode at GSI); revolution (cyclotron) frequency (ESR Schottky mode; ISOLTRAP and MISTRAL at ISOLDE)
 - V. Comparisons of the different methods
- VI. The atomic mass evaluation (demonstration of the program NUCLEUS)
- VII. Mass models and comparisons; chaos on the mass surface?
- VIII. A look into the future
 - IX. Conclusions