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1. Introduction

• Interest in nuclear masses lies entirely in binding energy

B(N, Z) =
{
NMn + ZMp −M(N, Z)

}
c2

< 1% of total mass

– hence need for great precision

B = −E ,

where
HΨ = EΨ .



Home Page

Title Page

Contents

JJ II

J I

Page 4 of 109

Go Back

Full Screen

Close

Quit

• “Mass defect” first noted by Aston (1920)

H: 1.008 4He: 4.000

(at the time believed that 4He = 4H + 2e)

•Eddington (1920) made connection with E = mc2 and at the
same time saw that conversion of H to He could be source of
stellar energy

– a long-standing puzzle solved.

•Eddington’s comment marks birth of nuclear astrophysics;

link to nuclear masses established right at the out-
set.
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N.B. ATOMIC masses

•Tabulated masses are for neutral atoms not bare nuclei.

e.g., Atomic Mass Evaluation (AME) of Audi et al. (2003)

Mat(N, Z) = M(N, Z) + Z me −Bel(Z)/c2 ,

where

Bel(Z) = 14.4381 Z2.39 + 1.55468× 10−6 Z5.35 eV

is binding energy of electrons in atom.

•Actually, it is mass excess ∆(N, Z) that is tabulated:

∆(N, Z) =

{
Mat(N, Z)− A

12
Mat(6, 6)

}
c2

(in keV)
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What have we learned from mass measurements?

1. B/A roughly constant, around 8 MeV per nucleon.

This, along with R ∝ A1/3, led to idea of saturation of nuclear forces,

i.e., each nucleon interacts only with its nearest neighbors (aside from

Coulomb force between protons).

Nuclear matter. Liquid-drop model (charged).

2. Pairing.

From systematics of even-A beta-decay chains.

3. Generalized shell model (including deformations).

From two-neutron separation energies

S2n(N, Z) = Mat(N − 2, Z)−Mat(N, Z) + 2Mn .
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Fig. 1.1. Two-neutron separation energy S2n of several elements in the range Z ∼ 30-50, as
a function of neutron number N .
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Mass measurements made crucial contribution to
our understanding of nuclear structure in the 1930’s.

Diminishing contribution since 1948.

So why the current interest in mass measurements?

Astrophysics
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Fig. 1.2. Nuclei with measured masses according to 2003 AME. NOT shown: nuclei for
which quoted mass is an estimate based on local systematics (indicated by # in table).
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2221 measured nuclei in 2003 AME

1964 measured nuclei in 1995 AME

Any limit on nuclei that can exist and in principle have mass
determined?

Increasing β− instability as we add neutrons and move off to
the right, because beta-decay energy Qβ increases,

Qβ = Mat(N, Z)−Mat(N − 1, Z + 1)

More seriously, neutron separation energy Sn decreases,

Sn = Mat(N − 1, Z)−Mat(N, Z) + Mn

When Sn = 0 impossible to add any more neutrons.
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Likewise increasing β+ instability as we add protons and move
off to the left of beta-stable nuclei. Also, decreasing proton
separation energy Sp,

Sp = Mat(N, Z − 1)−Mat(N, Z) + MH

When Sp = 0 impossible to add any more protons.

Neutron drip line:

Z fixed, add neutrons, first nucleus with Sn = 0.

Proton drip line:

N fixed, add protons, first nucleus with Sp = 0



Home Page

Title Page

Contents

JJ II

J I

Page 12 of 109

Go Back

Full Screen

Close

Quit

Fig. 1.3.

HFB-14 is the most recent Hartree-Fock Bogoliubov mass model of the Brussels-Montreal
(B-M) group: Goriely et al. (2007).
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Fig. 1.4.

Fig. 1.5.
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Mass dependence of r-process

Sn = Mat(N − 1, Z)−Mat(N, Z) + Mn

Qβ = Mat(N, Z)−Mat(N − 1, Z + 1)

only differential quantities

absolute masses not required
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Fig. 1.3.

Fig. 1.6.
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Outer crust. ' 300 meters thick. 0 < ρ < 1.2× 10−3 ρ0
– n-rich nuclei (+ electrons); within neutron drip line.
Composition depends only on Sn and Qβ: absolute

masses again not required.

Inner crust. ' 500 meters thick. 1.2× 10−3 ρ0 < ρ < 0.4 ρ0
– nuclear clusters (+ electrons) floating in neutron vapour;

beyond neutron drip line (EOS sensitive to mass fit).

Core. 10 km radius (roughly). ρ up to about 4 ρ0
– homogeneous gas of n and p (+ electrons).

About 97 % n at ρ around ρ0; other particles
(including possibly free quarks) towards center.

Electrical neutrality everywhere assured by electron
gas: beta-equilibrated with nucleons.
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Fig. 1.7.

Lack of data on n-rich side: serious problem for astrophysics.

Semi-empirical global mass models.
For reliable extrapolations into the unknown n-rich region un-
derlying theory must be sound: not enough to have a good fit.

rp process. Very few holes in data on p-rich side; can rely on
local models, of which best are those of AME (#), when avail-
able. Otherwise, Garvey-Kelson, etc.

I will talk only about semi-empirical global mass models.
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Masses not the only nuclear quantity of astrophysical interest.

r-process, for example requires:

β-decay rates
Level densities
Fission barriers

Fission leads to high-A termination of r-process path (and sub-
sequent recycling).

Fission also occurs during β-decay cascade back towards stabil-
ity line.
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Fig. 1.8. Fig. 1.9.
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Any model of fission is automatically a mass model: energy
calculated as function of deformation, so just look for minimum.

Converse is almost true: most mass models have been adapted,
more or less successfully, to calculation of barriers.

Mass models relevant also for EOS of inner crust of
neutron star (see Section 4)

Need a unified treatment: same model, with same parameters,
for fission and masses – and for many other nuclear properties.
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2. Semi-empirical mass formula

Weizsäcker(1935). Also Bethe and Bacher (1936).

E = avolA + asfA2/3 +
3e2

5r0
Z2A−1/3

+
(
asymA + assA

2/3
)

I2 + ∆n + ∆p

∆n,p = ±δ as N, Z even or odd.

(rms charge radius given by Rch = r0A
1/3)

I =
N − Z

A

ass term is due to Myers and Swiatecki (1966).
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Fit the six parameters to all 2149 measured masses for N, Z ≥ 8
given in 2003 AME.

avol = -15.697550 MeV asf = 17.662690 MeV

asym = 26.308165 MeV ass = -17.003132 MeV

r0 = 1.221897 fm δ = -1.250000 MeV

e2 = 1.43985 MeV.fm

Mean deviations

σ = 2.75 MeV, ε̄ = 0.022 MeV

σ(δ E/E) = 0.4%
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Fig. 2.1. Deviation of Weizsäcker formula from experiment.
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Fig. 2.2. Line of β stability for Weizsäcker formula.
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Fig. 2.3. Drip lines for Weizsäcker formula and HFB-14 model.
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Fig. 2.4. α-unstable nuclei for Weizsäcker formula.
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Fig. 2.5. Beta-delayed nucleon emitters for Weizsäcker formula.
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Large A limit of Weizsäcker formula

e ≡ E

A
= avol + asfA−1/3 +

3e2

20r0
A2/3(1− I)2

+ (asym + assA
−1/3)I2

where I = N−Z
A .

Because of Coulomb term (non-saturating) this diverges unless
I = 1, i.e., pure neutron system. So set I = 1:

e ∼ avol + asym ,

which is ' +10.6 MeV.
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So large neutron systems are unbound?

But what about neutron stars?

• They must be bound by gravity!

So let’s rederive the Weizsäcker formula, the way we did in
kindergarten, except that this time we include gravity.
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REMEMBER

Gravity is formally identical to Coulomb (but attractive):
inverse-square and therefore non-saturating

EG =
3GM2

5R
=

3GM2

5r0
A5/3

e = avol + asfA−1/3 +
3

5r0

{
e2

4
(1− I)2 −GM2

}
A2/3

+ (asym + assA
−1/3)I2
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For large A Coulomb repulsion dominates, unless pure neutron
system. So set I = 1 again.

e ∼ avol + asym − 3GM2

5r0
A2/3

As A increases gravitational attraction becomes more and more
important, and eventually will bind the system

e < 0

for

A >

{
5r0

3GM2
(avol + asym)

}3/2

≈ 0.79× 1056

An.s. ≈ 1.6× 1057
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So Weizsäcker, modified for Newtonian gravity, gives us neutron
stars to within a factor of 20:

neutron star is a giant nucleus.

Actually, our estimate for An.s. is really a lower limit: mini-
mum value for gravitational binding of star. Now sophisticated
models of neutron stars also show minimum mass of around 0.1
M�, i.e.,

Amin
n.s. ≈ 1.0× 1056

below which the star is unstable (see, for example, Haensel et
al. (2002), and references cited therein).

So the Weizsäcker estimate looks even better.
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But don’t get too excited:

1) Neutron stars are not pure neutron matter – there is some
β-decay to p – e pairs

2) Central density ρc ≈ 4ρ0. So muons, and maybe even free
quarks at center.

3) Must be treated in general relativity.
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Nevertheless, there is something to learn from this:

Consider a binary pair of neutron stars, one of which is much
lighter than the other. The lighter star will lose mass to the
bigger star, and when its mass falls below the critical minimum
mass there is a consensus that it will blow up.

Our analysis shows that it is the symmetry energy that blows
the star up when the gravitational binding becomes inadequate.
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Infinite nuclear matter (INM)

Hypothetical system, large-A limit of nuclei with electric charge
switched off.

Beloved by nuclear theoreticians because of its relative simplic-
ity: translational invariance.

Properties can be inferred from Weizsäcker formula:

e = avol + asymI2 where I = N−Z
A

ρ0 = 1/(4π
3 r3

0) (for I = 0)
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3. The fundamentalist’s approach

i.e., the nuclear many-body problem

the basic problem of nuclear theory

HΨ = EΨ

where

H = − ~2

2M

∑
i

∇2
i +
∑
i>j

Vij +
∑

i>j>k

Vijk

Vij – fitted to N-N scattering and d

Vijk – fitted to t, h, and (in principle) N − d scattering

Also accept guidance from meson theory or QCD.
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Solution of this Schrödinger equation very difficult because of

a) Strong short-range repulsion

b) Tensor coupling 3S1 −3 D1

Infinite nuclear matter (INM): simplest many-body sys-
tem

50 years after the first calculations of Brueckner fairly satisfac-
tory results are being obtained with the v18 Argonne N-N force
and various N-N-N forces:

Akmal et al. (1998): variational methods

Zuo et al. (2002a, b): Brueckner-Bethe-Goldstone methods

Note the importance of N-N-N forces for correct saturation.
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Success of INM calculations a triumph for nuclear theory.

For astrophysics main interest lies in being able to calculate pure
neutron matter (I = 1) as a function of density.

Note that the Schrödinger equation that is solved, and the entire
theory, is non-relativistic.

There is also a fully relativistic (“Dirac-Brueckner”) theory,
which claims to dispense with the need for N-N-N term, but
this has been contested (Zuo et al. (2002a).
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Finite nuclei

Above methods cannot give anything like the accuracy required
for astrophysics.

Most promising approach is Green’s function Monte Carlo
method, but at present can’t go beyond 12C (see Barrett et al.
(2003) for a review).

So the fundamentalist, or ab initio, approach really doesn’t
meet the needs of astrophysicists (except for neutron matter).

We are forced back to a semi-empirical approach.
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Two possibilities for viable semi-empirical mass models:

either
simplify the many-body problem – keep Ψ

Hartree-Fock models
Relativistic mean-field method

or
refine the Weizsäcker formula – no Ψ

Macroscopic-microscopic models
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4. Hartree-Fock-Bogoliubov model

Exact many-body problem

HΨ = EΨ

where

H = − ~2

2M

∑
i

∇2
i +
∑
i>j

Vij +
∑

i>j>k

Vijk

Since we can’t solve this Schrödinger equation with anything
like the required accuracy we try to solve an easier one:

accept guidance from success of the shell model
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Shell-model Hamiltonian is

H0 =

A∑
i=1

h(xi)

– each term is function only of coordinates of nucleon i. Solution
is product

Φ(x1, x2, . . . , xA) =

A∏
i=1

φi(xi) ,

where

h(xi)φi(xi) = εiφi(xi) .
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Then

H0Φ = E0Φ ,

where

E0 =

A∑
i=1

εi

antisymmetrization of Φ: product replaced by Slater determi-
nant

Φ = det{φi(xi)}
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If no antisymmetrization, i.e., for

Φ(x1, x2, . . . , xA) =

A∏
i=1

φi(xi) ,

no correlations:

P (x1, x2) = P (x1)P (x2)

independent-particle motion

Pauli-principle correlations, but why no correlations associated
with known strong short-range repulsion?
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Understanding success of shell model was one of the big problems
of nuclear physics in the 1950s.

Weisskopf: Pauli principle suppresses correlations associated
with short-range repulsion.

Shell-model wavefunction Φ is valid over a large fraction of
nuclear volume.
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Hartree-Fock:

variational method using shell-model functions as trial
functions:

E =< Φ|H|Φ >

where

Φ = det{φi(xi)}

Minimize E w.r.t. arbitrary δφi

But what is H?
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If we take the real Hamiltonian

H = − ~2

2M

∑
i

∇2
i +
∑
i>j

Vij +
∑

i>j>k

Vijk

we will be in trouble.

Must modify Hamiltonian to take account of short-range corre-
lations in wavefunction.

Heff = − ~2

2M

∑
i

∇2
i +
∑
i>j

v
eff
ij
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Ultimately, we might hope to deduce v
eff
ij from real forces, but

that is just the many-body problem for a finite nucleus.

Solution to that problem (at least with required accuracy) lies
in the distant future, and we want a mass model NOW.

So back to the semi-empirical approach:

take a suitable form of force and fit its parameters to the mass
data, just like Weizsäcker did.

Only the non-relativistic approach has been developed to the re-
quired degree of accuracy. The method of the Relativistic Mean
Field is promising, but at present is not sufficiently accurate.



Home Page

Title Page

Contents

JJ II

J I

Page 49 of 109

Go Back

Full Screen

Close

Quit

Skyrme force 10 parameters

vij = t0(1 + x0Pσ)δ(rij)

+t1(1 + x1Pσ)
1

2~2
{p2

ijδ(rij) + h.c.}

+t2(1 + x2Pσ)
1

~2
pij.δ(rij)pij

+
1

6
t3(1 + x3Pσ)ραδ(rij)

+
i

~2
W0(σi + σj).pij × δ(rij)pij

This is the choice for the HFB mass models of the B-M group:
see, for example, Samyn et al. (2004); also Lunney et al.
(2003).
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Implementation of pure HF

E =< Φ|Heff |Φ >

where

Φ = det{φi}

Variational principle

δE

δφi
= 0

for all φi
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Leads to HF equation for each s.p. function φ

{
−∇ · ~2

2M∗(r)
∇ + U(r)− iW(r) ·∇× σ

}
φi = εiφi

M∗, U , and W all depend on densities and thus on solutions φ.

Thus this s.p. Schrödinger equation has to be solved by succes-
sive reiterations until self-consistency is achieved.
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Pairing

We observe that:

• even-even nuclei energetically favoured
– see Weizsäcker formula.

• ground state of e-e nuclei is always J = 0.

We infer that:

energetically favourable for like valence nucleons to pair off to
zero net ang. momentum.

This is a correlation - cannot be accounted for within framework
of pure HF.
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Another problem:

In pure HF only doubly magic nuclei are spherical – it
is pairing of like valence nucleons that keeps nuclei spherical,
until sudden collapse (phase transition) to deformed shape close
as mid-shell is approached.
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How do pairing correlations arise?

What has happened to the Pauli-principle argument that ac-
counts for validity of shell model?

Pauli principle no longer blocks scattering of valence nucleons.

Also interaction through coupling of two nucleons to surface
phonon.
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Hartree-Fock-Bogoliubov method:

introduces pairing correlations into variational function
– pairing and mean field treated on same footing.

Choice of pairing force in B-M collaboration:

vpair(rij) = Vπqδ(rij)

BCS approximation

much simpler: HF and pairing decoupled, with pairing calcula-
tion done at the end of each HF iteration

– but not as reliable as HFB for neutron-rich nuclei



Home Page

Title Page

Contents

JJ II

J I

Page 56 of 109

Go Back

Full Screen

Close

Quit

Wigner terms

If Skyrme and pairing forces are only ingredients then serious
underbinding (≈ 2 MeV) for N = Z.

Two possible sources:

i) n-p T = 0 pairing. Attractive, strongly peaked at N = Z.

ii) Wigner supermultiplet theory. In real nucleus isospin T con-
served (approximately).
Ground state: T = |Tz| = |N − Z|.
Wigner (1937): there should be an energy term T (T + 1) -
positive. In g. s. we have

T (T + 1) = (N − Z)2 + |N − Z|

HF misses this, but (N−Z)2 gets absorbed into the fitted force.
However, |N − Z| gives rise to sharp cusp that cannot be so
absorbed. Thus such a term has to be added to HFB energy.
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In the B-M collaboration we represent the two together by

EW = VW exp

{
−λ

(
N − Z

A

)2
}

+V ′W |N − Z| exp

{
−
(

A

A0

)2
}

Isospin is a good quantum number only for light nuclei, so we
put in exponential damping w. r. t. A in second term.

Fits always give A0 ≈ 30.

First term is more important.
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Miscellania

• Rotational correction

Total angular momentum is not conserved in non-spherical self-
consistent field. For g.s. we have J = 0 for even-even nuclei.
Thus we have to subtract spurious rotational energy

Erot =
< Ĵ2 >

2I

where I is moment of inertia. In the B-M collaboration this
contains two parameters that are fitted to masses.
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• Vibrational correction

So far we have assumed that shape of self-consistent field is
time-independent, although we allow deformed fields to rotate.

But this is unduly restrictive: vibrations. Effect is to lower g.s.
energy - extra degree of freedom in variational function.

In models HFB-1 to HFB-13 we neglected this effect, without
any serious consequence to masses – all nuclei are affected, and
thus the effect is absorbed into the force on fitting to data.
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However, with this procedure, i.e., without any explicit vibra-
tional correction, we find that we underestimate height of high
barriers, which always lie at high deformation. Now vibrational
correction is known to become smaller at high deformations,
which means that we were subtracting too much vibrational
energy at large deformations.

Model HFB-14: 3-parameter phenomenological term that com-
pensates for the vibrational over-correction at large deforma-
tions. See Goriely et al. (2007).
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• Odd nuclei

In the models of the B-M collaboration we make some special
approximations for these nuclei.

HF states for odd nucleons are not eigenstates of the time-
reversal operator. In principle we should project out states of
good time-reversal properties, which lowers the energy.

We do not do this, and compensate for the lost binding in odd
nuclei by making the pairing force stronger in these nuclei than
in even-even nuclei.
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• Neutron matter

Beginning with model HFB-9 of the B-M collaboration, we im-
pose a fit not only to the mass data, but also to the properties
of neutron matter, as calculated from realistic N-N and N-N-N
forces.

This leads to a slight deterioration in the quality of the fit to
the mass data, but should improve the reliability of the mass
predictions for highly neutron-rich nuclei.

Moreover, such forces are well adapted to the calculation of the
EOS of the inner crust of neutron stars with the HFB method
(or approximations thereto):

in addition to well representing the highly neutron-rich
environment, the mass fit takes into account

i) presence of protons
ii) inhomogeneities
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5. Macroscopic-microscopic models: the FRDM

and FRLDM

Recall Weizsäcker formula

E = avolA + asfA2/3 +
3e2

5r0
Z2A−1/3

+
(
asymA + assA

2/3
)

I2 + ∆n + ∆p

Most obvious defect is lack of shell corrections.
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Finite-Range Droplet Model

–preferred model of experimentalists when presenting new mass
measurements

Möller et al. (1995)

But this same paper also presents the

Finite-Range Liquid-Drop Model

FRDM is more sophisticated – better fit to masses

but has serious problems for barriers
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E = Emac + Emic

Emac: refined version of Weizsäcker’s liquid drop

Emic: shell + pairing + Wigner terms

Total energy E minimized wrt deformations.

FRDM and FRLDM differ in macro. part; identical micro. parts
(determined in FRDM fit).
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Finite-Range Liquid-Drop Model – macro. term

E = avolA + a1B1A
2/3 +

3e2

5r0
B3Z

2A−1/3

+
(
asymA + assB1A

2/3
)

I2 + · · ·

B1 and B3 intended to take care of deformations.

N. B. a1 6= asf
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Surface energy is manifestation of finite range of forces.

Deformation dependence of surface taken into account by fold-
ing finite-range force over nuclear volume:

B1 =
A−2/3

8π2r2
0a

4

∫ ∫ (
2− |r − r′|

a

)
exp(−|r − r′|/a)

|r − r′|/a
d3rd3r′

- force is difference of a Yukawa and an exponential term.
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Likewise, Coulomb energy for arbitrary shape determined by
folding Coulomb force over nuclear volume.

B3 =
15 A−5/3

32π2r5
0

∫ ∫
d3rd3r′

|r − r′|
×[

1−
(

1 +
|r − r′|
2aden

)
exp(−|r − r′|/aden)

]

aden represents diffusivity of nuclear surface
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Finite-Range Droplet Model – macro. term

Replacement of liquid-drop by so-called droplet model

Myers and Swiatecki (1969, 1974)
Treiner et al. (1986)
Möller et al. (1995)

Retain the basic idea of the Weizsäcker liquid drop:

Emac = Evol + Esf + Ecoul

– but much more complicated.

Assume spherical shape at first.
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Droplet is compressible: can be squeezed by surface tension and
dilated by Coulomb repulsion.This is first new degree of freedom
introduced by droplet model.

ε = (ρ0 − ρ)/3ρ0,

ρ0 equilibrium density of symmetric INM
– this is density appearing in Weizsäcker model.

Evol/A ≡ e∞(ρ, δ)

= avol +
1

2
Kvolε

2 +
(
asym − Lε

)
δ2 + . . .

δ = (ρn − ρp)/ρ

ρeq = ρ0

{
1− (3L/Kvol)δ

2
}

.
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All these densities assumed to be uniform throughout bulk of
nucleus

ρn,p ≡ ρbulk
n,p

But densities on surface, ρs
n, etc., are allowed to be different,

δ ≡ (ρn − ρp)/ρ 6= I ≡ N − Z

A

Droplet model treats all departures from uniformity as surface
effects
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Surface
neglect asymmetry effects at first

Esf = 4π R2σ

But

(4π/3)ρ R3 = A

and

ρ = ρ0(1− 3ε)

=
3

4π r3
0

(1− 3ε)

Then

Esf = 4π r2
0 (1− 3ε)−2/3σ A2/3

= (1− 3ε)−2/3asfA2/3
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Surface-symmetry effects:

possible dependence of Esf on neutron excess I .

Shown implicitly by Myers and Swiatecki (1969), and explicitly
by Treiner and Krivine (1986), that such a dependence can arise
only if a neutron skin is formed, i.e., different equivalent sharp
radii Rn and Rp for n and p, respectively

(4π/3)ρnR3
n = N

(4π/3)ρpR
3
p = Z

Then

Rn,p ≈ r0A
1/3{1 + ε± 1

3
(I − δ) + . . .}
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and neutron-skin thickness is

τ ≡ Rn −Rp =
2

3
r0(I − δ)A1/3 + . . .

Droplet model allows neutron and proton surfaces to separate,
i.e., permits formation of neutron skin. This is the second new
degree of freedom introduced by droplet model.

Because of charge symmetry take dependence of Esf on τ to be
quadratic:

Esf = 4πR2

{
σ +

Q

4πr2
0

(
τ

r0

)2
}

≈ (1 + 2ε)asfA2/3 +
4

9
Q(I − δ)2A4/3

Q: surface-stiffness coefficient
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Take now for Coulomb energy

Ecoul =
3

5

e2Z2

Rp

where

Rp ≈ r0A
1/3{1 + ε− 1

3
(I − δ) + . . .}

Minimize

Emac = Evol + Esf + Ecoul

w.r.t. δ and ε. We find

δ =
I + (9e2/40r0Q)Z2A−5/3

1 + (9asym/4Q)A−1/3

and

ε =
−2asfA−1/3 + Lδ2 + (3e2/5r0)Z

2A−4/3

Kvol
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Substitute these values of δ and ε into expressions for Evol, Esf
and Ecoul:

Emac = (avol + asymδ2 − 1

2
Kvolε

2)A

+

(
asf +

9a2
sym

4Q
δ2

)
A2/3

+
3e2

5r0
Z2A−1/3 − 9e4

400r2
0Q

Z4A−2

holds only for equilibrium
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Extract from Eq. (40) of Möller et al. (1995)
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Exponential compressibility term

ε =
−2asfA−1/3 + Lδ2 + (3e2/5r0)Z

2A−4/3

Kvol

If we neglect asymmetry and Coulomb effects density rises
monotonically as A decreases – natural consequence of surface
tension.

But HF and TF calculations all show that density goes through
a maximum for A around 60
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Emac = Evol + Esf + Ecoul − CA exp(−γA1/3)ε

Expression for ε is modified,

ε =
C exp(−γA1/3)− 2asfA−1/3 + Lδ2 + (3e2/5r0)Z

2A−4/3

Kvol
,

but new term does not appear explicitly in Emac at equilibrium
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Deformations

As in FRLDM most terms multiplied by deformation-dependent
B−factors

– but not the exponential compressibility term.

That is why the model cannot be used for large deformations,
and in particular for fission.

(Some other problematical terms also.)

Such problems do not arise with Hartree-Fock, or
even in its semi-classical approximations.
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Microscopic Corrections

Derived for FRDM, carried over into FRLDM.
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Microscopic term 1: shell corrections

Strutinsky theorem:

E = Emac + Esc ,

where

Esc =
∑

i

niεi −
∑̃

i

niεi .

εi: s.p. energies

ni: occupation probabilities

second term: smoothed version of first
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For s.p. energies need to have a s.p. field U that is related, in
the interest of self-consistency, to macro. term

U = V1 + Vs.o. + Vcoul

where

V1(r) = −
V

q
0

4πa3
pot

∫
exp(−|r − r′|/apot)

|r − r′|/apot
d3r′

Requirement of consistency between macro. and micro. parts is
only partially satisfied.

Also

Vs.o.(r, p) = −λq ~
4M2c2

σ · ∇V1(r)× p
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Implementation of Strutinsky theorem

Esc =
∑

i

niεi −
∑̃

i

niεi

How to smooth?

∑
i

niεi =

∫ ∞

−∞
εg(ε) dε

where we have introduced spectral function

g(ε) =
∑

i

niδ(ε− εi)

Then ∑̃
i

niεi =

∫ ∞

−∞
εg̃(ε) dε
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δ(ε− εi) →
1

γ
√

π
exp
{
−(ε− εi)

2/γ2
}

“plateau condition”:
results should be independent of
smoothing parameter γ

not always satisfied
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Microscopic term 2: Pairing corrections

• Constant-G scheme (“seniority” force)

• BCS approximation

• Lipkin-Nogami procedure for approximate number conserva-
tion
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Microscopic term 3: Wigner correction

Only a term linear in T term is considered,

EW =
VW

A
(|N − Z| + δ)

where δ = 1 if N and Z are both odd and equal.

No term representing n− p T = 0 pairing.
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6. Comparison of models

Rms and mean (expt. - model) deviations between data and predictions for various models.
The first pair of lines refers to all the 2149 measured masses M of nuclei with Z and N ≥ 8
given in the 2003 AME, the second pair to the masses Mnr of the subset of 185 neutron-rich
nuclei with Sn ≤ 5.0 MeV, and the third pair to the 782 measured charge radii given in the
compilation of Angeli (2004).
HFB-8: Samyn et al. (2004) - no neutron-matter constraint
HFB-14: Goriely et al. 2007 - neutron-matter constraint
DZ = Duflo and Zuker (1995), a model that parametrizes multipoles of an implicit force:
intermediate between macro. and micro., but more unified than macro-micro methods.

FRDM FRLDM HFB-8 HFB-14 DZ
σ(M) [MeV] 0.656 0.769 0.635 0.729 0.360
ε̄(M) [MeV] 0.058 -0.403 0.009 -0.057 0.009

σ(Mnr) [MeV] 0.910 0.955 0.838 0.833 0.527
ε̄(Mnr) [MeV] 0.047 -0.078 -0.025 0.261 0.126
σ(Rc) [fm] 0.0545 0.159 0.0275 0.0309 -
ε̄(Rc) [fm] -0.0366 -0.151 0.0025 -0.0117 -
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Number of model parameters

DZ (1) FRDM (2) HFB-14 (3)
28 19 21

1) Duflo and Zuker (1995).

2) Estimate of Lunney et al. (2003).

3) +3 parameters for large-deformation vibrational correction,
which are fitted to fission barriers.
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Fission barriers for HFB-14

Data: RIPL-2 compilation (2006): www-nds.iaea.org/RIPL-2/

σ (MeV) ε̄ (MeV)∗

Set 1 1.31 -0.72
Set 2 0.67 -0.36

∗ expt. - model

Set 1: complete RIPL-2 data set of 77 primary barriers,
80 ≤ Z ≤ 96.

Set 2: subset of all the 52 primary barriers lower than 13.5 MeV
(higher barriers of less astrophysical interest).
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Performance on new data

HFB-14 was fitted to latest data (2149 nuclei of 2003 AME) so
no checks possible.

DZ fitted to 1995 AME - 1964 nuclei:
σ = 0.346 MeV (0.360 MeV for 2003 AME)
- only a slight deterioration.

FRDM fitted to 1989 “midstream” AME - 1654 nuclei:
σ = 0.681 MeV ∗ (0.656 MeV for 2003 AME)
- FRDM actually improves with age!

Improvement lies on p-rich side where most of new data lie.

∗ Möller et al. quote a “model” error.
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All these models agree closely in the known region.

But what happens when we extrapolate

to the neutron drip line?
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Fig. 6.1 Fig. 6.2

Fig. 6.3
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Largest divergence is between FRDM and HFB-14

latter more strongly bound at n-drip line

–neutron skin is softer.

Difference reduced by extra term in FRDM surface energy:

Esf = 4πR2

{
σ +

Q

4πr2
0

(
τ

r0

)2

+
Q′

4πr2
0

(
τ

r0

)4
}

Dutta et al. (1986).

Could be unphysical constraint implicit in Skyrme force, but
other mean-field models are similar to HFB-14 in this respect:
see Fig. 11b of Lunney et al. (2003).
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Comparison of FRDM and HFB-14 predictions for M , Sn and
Qβ of highly neutron-rich nuclei with Sn < 4.0 MeV. We show
rms and mean (FRDM - HFB-14) differences (MeV).

M Sn Qβ
σ 8.22 0.75 1.12
ε̄ 6.30 -0.32 0.79



Home Page

Title Page

Contents

JJ II

J I

Page 97 of 109

Go Back

Full Screen

Close

Quit

Fig. 1.1.Two-neutron separation energy S2n of several elements
in the range Z ∼ 30-50, as a function of neutron number N .
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Measure of discontinuity in S2n at magic neutron numbers N0:

Shell gap

∆n(N0, Z) = S2n(N0, Z)− S2n(N0 + 2, Z)
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Fig. 6.4. N0 = 50 gaps
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Fig. 6.5. N0 = 82 gaps
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Fig. 6.6. N0 = 126 gaps
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Fig. 6.7. N0 = 184 gaps
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Shell gaps tell us:

• Vital need for more data.

• No model works very well.
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7. Conclusions

Present situation

Of the three models DZ, FRDM and HFB-14, none can be used
with total confidence

– if possible, r-process calculations should be performed with all
three models.
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Future directions

Duflo-Zuker Even if it is possible to improve DZ (and it is al-
ready very good), it should be remembered that it can be used
only for masses, and cannot be extended to other quantities of
astrophysical interest.

Macro-micro. This approach generalizes the simple but ex-
tremely fruitful Weizsäcker mass formula, but the failure of the
FRDM at large deformations and the need to resort to the older
FRLDM for fission suggests that further developments along
these lines might be difficult.
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HFB This is the path to follow in the future, where
investment of effort is most likely to lead to progress

– remember, it is only five years since the publication of the
first HFB model, and more than seventy since the Weizsäcker
mass formula was published!

But plenty of room for improvement on HFB-14
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Following improvements are possible – and needed:

• Correct treatment of odd nuclei.

• More realistic pairing force.

• Correct treatment of continuum.

• More microscopic collective corrections.

• Microscopic treatment of Wigner terms.

• Higher-order terms in the Skyrme force.

• Replace Skyrme forces by finite-range effective forces.

Many of these improvements have already been realized, mainly
through the efforts of the Oak Ridge-Warsaw group and their
many collaborators. Hope to see them incorporated in future
mass models.
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HFB mass models can easily be extended to the calculation
of other quantities of astrophysical importance: fission, level-
density formulas, EOS, beta-decay strength functions, etc.

Moreover, this is the channel through which we may ultimately
hope to relate the properties of finite nuclei with the basic
nucleonic forces –

the fundamental problem of nuclear physics.
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