Observation of Ultra-fast transitions in A~50 Mass Region following the ²⁰Ne + ⁴⁰Ca reaction (*a*)150 MeV.

Somsundar Mukhopadhyay UGC – DAE Consortium for Scientific Research , Calcutta, INDIA (Previously IUC – DAEF, CC)

&

University of Notre Dame, Indiana, USA

Cross-section measurements for the ²⁰Ne + ⁴⁰Ca reaction @ 150 MeV, were reported by Nguyen Van Sen *et al.* in PRC 22, (1980) 2424.

²⁰Ne + ⁴⁰ Ca @ 150 MeV

[PRC22 (1980) 2424

The Full line ---- Measured Data

Dashed Line Evaporation Residue Distribution Calculated with ALICE Code

Not only FusionBut Deeply Inelastic Reactions are equally dominant.

Simple Classical calculations predict that

@ 151 MeV,

Fusion Cross section $\sim (1/2)$ of The Total Reaction

Cross section

Earlier Difficulties in the study of the f_{7/2} – shell Nuclei through Fusion-evaporation Reactions....

Investigation of High-spin states undergoes

Experimental Difficulties due to.....

Low Angular Momentum transferred via Heavy-Ion Fusion-evaporation reaction Because of the small masses of the Reaction Partners

Low Coulomb Barrier leads to a large number of Competing Reaction Channels with Evaporation of Charged Particles

Solution:

Moderately Large Gamma – ray Arrays and non-equilibrated reaction mechanism to populate & investigate higher angular momentum states in these nuclei.

.....We Opted for Indian National Gamma Array (Then at VECC,Calcutta, INDIA)

Array of Six Clovers

Electronics & DAQ System

- Integrated Electronics Modules(from NSC) for Clover Detectors were used.
- Data Acquisition was done using a CAMAC-based multi-parameter system "LAMPS".

 $\succ E_{\gamma} T_{\gamma}$ and RF- Gamma were recorded.

The entire electronics & DAQ were housed in the cave.

Experimental details

<u>Beam</u> :

²⁰Ne with 6⁺ charged state

Beam Current : Target Chamber:

~1 nA

A compact uniformly thick Al chamber with conical entrance and exit ports

Target:

Natural Ca sandwiched between two mylar films Front Mylar thickness ~ 4 μm Backing Mylar thickness ~ 25 μm

Target Thickness: <u>Event Rate</u> : <u>Events Recorded:</u>

5mg/cm²

~ 2.5k/sec

~80 Million Gamma-Gamma Coincidence Events were Recorded.

Fast Transitions in ⁵⁰Cr

Representative Gated γ Spectrum (Fingerprint of a Nucleus !!!!!)

Partial Level Scheme of ⁵⁰Cr

Representative Gated γ Spectrum (Fingerprint of a Nucleus !!!!)

Partial Level Scheme of ⁵¹Cr

To measure Experimental F(τ) To simulate Theoretical F(τ) To extract Effective Lifetime after comparing them To extract Mean Lifetime of the Nuclear Levels after applying the Feeding correction

Difficulties:

- **1> Thick Target**
- **2> Different Reaction Mechanisms**
- 2> Angular spreading

Solution:

Development of a new Monte Carlo Algorithm:

- **1> Optimized for two media**
- 2> Incorporates the idea of cross-section distribution over the thickness of the target

3> Takes care of Angular straggling

@ Mean Lifetime values of ⁵¹Cr and ⁴⁹V have been Extracted after comparing the algorithm and method with the Precise DSAM measurement of ⁵⁰Cr

a Shell Model Calculation are being applied to interpret the results.

a Search for Ultra-fast transition in A~50 region is On...

