MSU to Argonne: 3:44:00 (13440 s)

desired mass resolution: $1 \times 10^{-4} => dt/t = 1.5 s$ desired accuracy: 1×10^{-6} (~100 keV) => t centroid to 15 ms

Time of Flight Mass Measurements at the NSCL

Alfredo Estrade

why bother?: theory

why bother? astrophysics

1920's...

Aston: discovered mass defect

mHe - mH ~ .032 u

Edington (et al): source of stellar energy!

"what is possible in the Cavendish Laboratory may not be too difficult in the sun"

why bother? astrophysics

Explosive nucleosynthesis >> we need masses of unstable isotopes

experimental techniques

penning traps kick butt, but...

Mass Measurements at the GSI Storage Ring - ESR

Time-of-flight (TOF) Mass Measurements

Simultaneous measurement of magnetic rigidity (B ρ), and velocity:

$$B\rho = \frac{\gamma m}{q} \left(\frac{dx}{dt}\right)$$

Advantages:

- measure several isotopes simultaneously.
- short lived isotopes (half life $\sim 1 \ \mu s$).
- precision of ~200 keV for A ~ 100.

exp01035: cronica de una muerte anunciada

2001(?) proposal: D. Bazin, RRC. Clement, J. Gorres, P.T. Hosmer, <u>M. Ouellette</u>, P. Santi, H. Schatz, BM. Sherril, M. Wiescher.

"Thanks to John Yurkon for bestowing on me all his expertise in gas detectors and to Alfredo Estrade for his help in building and rebuilding the same detectors." – from Acknowledgments

exp01035: con't

2004 proposal: Milan Matos, JINA postdoc to work on mass measurements; I became an RA ...

Test Run with ¹³⁶Xe primary beam

experiment 01035

exp01035: the mighty MCPs

exp01035: the mighty MCPs

Microchannel Plate Detectors (MCP)

exp01035: con't

Feb 2006: we RUN!

exp01035: con't

RESULTS!!

exp01035: PID

AME2003 mass compilation:

 \bigcirc -error < 30 keV

- unknown masses: 53Sc, 61V, 63Cr, 66Mn, 69Fe, 72Co, 73Ni, 74Ni

exp01035: VERY preliminary results

exp01035: further analysis

exp01035: further analysis

Gaussian fit...

exp01035: further analysis

Position @ S800 target plane

•We've demonstrated the feasibility of TOF mass measurements at the NSCL.

• Further analysis in progress to reach desired mass uncertainty.

<u>Milan Matos</u>, <u>Hendrik Schatz</u>, Matt Amthor, Daniel Bazin, Ana Beceril, Thom Elliot, Alexandra Gade, Giuseppe Lorusso, Mauricio Portillo, Andrew Rogers, Dan Shapira, Ed Smith, Andreas Stolz, John Yurkon, Daniel Galaviz, Jorge Pereira, Mark Wallace.

web: http://groups.nscl.msu.edu/nero/

Experiments at the NSCL

SET UP:

- 100 MeV/u ⁸⁶Kr primary beam, ⁹Be target (45 mg/cm² & 94 mg/cm²).
- Path length = 58 m => TOF \sim 500 ns.
 - => 100 ps time resolution for 200 keV mass uncertainty
- Momentum dispersion at S800 11 cm/%.

