

... for a brighter future

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Astrophysics – Critical Nuclear Physics

K. E. Rehm Physics Division Argonne National Laboratory

NIC-X School, Argonne, July 2008

Nuclei involved in Astrophysics

Experiments with stable beams and targets:

provide data for BB nucleo-synthesis and quiescent burning scenarios

Need:

High beam intensities
thick targets, that can tolerate the beams
low backgrounds

Iong runs

See session 3: (C. Iliadis, G. Imbriani)

Experiments with radioactive beams:

provide data for explosive burning scenarios:

Need:

Beams of unstable nuclei (low intensities, contaminants)
thick targets (to compensate for the intensity)
long runs

Radioactive beam production:

Isotope Separation OnLine (ISOL)

Radioactive beam production:

Fragmentation Technique

Argonne

Radioactive beam production: In-Flight technique

. . .

The Nuclear Landscape

K. E. Rehm, NIC-X School 2008, Critical Nuclear Physics

Argonne

$B\rho - \Delta E - B\rho$ Separation Method

R. Schneider et al., Phys. Scr. T56, 67(1995)

Radioactive beam production at RIKEN

Argonne

Caveat: Existence/non-existence: ⁶⁹Br

B. Blank et al. PRL 74,4611(1995)

M. F. Mohar et al, PRL66,1571(1991)

Importance of nuclei with long half lives

Principle of Half-life Measurements

J. J. Prisciandaro et al. NIMA 505, 140(2003)

Example 2: n-rich Pd nuclei

F. Montes et al. PRC73, 035801(2006)

Argonne

Measurement of very long half lives: ⁶⁰Fe (T_{1/2}~1.5 Ma)

Principle:

- 1. Produce ⁶⁰Fe (e.g. in a beam stop of an accelerator) (N~10¹⁵ atoms).
- 2. Measure the activity of the sample.
- 3. Calculate (Roy and Kohman, Can. J. Phys. 35, 649(1957) or
- 4. Measure (Kutschera et al., NIMB5, 430(1984)) the number of atoms produced.
- 5. Use the relation $A(t) = \lambda N(t)$.

Measuring the number of atoms:

Technique:

K. E. Rehm, NIC-X School 2008, Critical Nuclear Physics

Argonne

Measurement of intermediate half-lifes: ⁴⁴Ti (T_{1/2}~60 years)

Argonne

Caveat: beware of the systematic errors!

K. E. Rehm, NIC-X School 2008, Critical Nuclear Physics

Argonne

The difference between half-life and mean life:

Half-Life of ¹⁰Be: A Correction*

Edwin M. McMillan

Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720 (Received 29 August 1972)

A mistake in computing the result of an earlier determination of the half-life of ¹⁰Be is pointed out. The corrected value is $(1.7 \pm 0.4) \times 10^6$ yr.

Yiou and Raisbeck¹ have published a redetermination of the half-life of ¹⁰Be, which differs from the previous measurements of Hughes, Eggler, and Huddleston² and McMillan.³ This discrepancy motivated me to check my orginal work sheets, and I discovered no mistakes except in the last step of the calculations, the conversion of the decay constant to the half-life, where I neglected to include the factor In2. Since both the decay constant and the half-life are given in the published paper, any reader can see where the mistake was made. I would therefore like to revise my 1947

result from $(2.5 \pm 0.5) \times 10^6$ yr to $(1.7 \pm 0.4) \times 10^6$

The result of Yiou and Raisbeck for the half-1 is $(1.5\pm0.3)\times10^{6}$ yr, in agreement with my revised value. The Hughes, Eggler, and Huddless result of 2.9×10^{6} yr (no error given) has been vised to 1.6×10^{6} yr by Emery, Reynolds, and Wyatt,⁴ using the ratios of new and old values for the relevant cross sections. These authors also give a new experimental determination, $(1.6\pm0\times10^{6}$ yr. Thus there now seems to be general agreement that the half-life of ¹⁰Be is close to 1.6×10^{6} yr.

*Work performed under the auspices of the U.S. Atomic Energy Commission.

¹F. Yiou and G. M. Raisbeck, Phys. Rev. Letters <u>29</u>,

Rev. 71, 269 (1947).

³E. M. McMillan, Phys. Rev. 72, 591 (1947).

⁴J. F. Emery, S. A. Reynolds, and E. I. Wyatt, Nuc

Why do we need masses?

•Needed to determine the driplines

•Needed to determine the half-lives

•Needed to determine the path of the r-process

Techniques for mass measurements

Reaction Q-values: A(a,b)B
 TOF + energy measurements: E=m*s²/t²
 Cyclotron resonance: T_{cycl}*eB/2π=m/q
 Storage rings

For details see D. Lunney et al. RMP75, 1021(2003)

D. Lunney, Proc. Nuclei in the Cosmos IX, (2006)

K. E. Rehm, NIC-X School 2008, Critical Nuclear Physics

Argonne

NAL LABORATORY

How a Penning trap works -1

- constant axial magnetic field
- particle orbits in horizontal plane

$$\mathcal{W}_{c} = \frac{qB}{m}$$

• free to escape axially

How a Penning trap works-2

Add an axial harmonic potential to confine particles:

Motion of ions in a Penning trap

Solve for equations of motion:

$$\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$$

Axial oscillations:

$$\omega_z = \sqrt{\frac{eV}{md^2}}$$

Radial motion:

$$\omega_{\pm} = \frac{\omega_c}{2} \pm \sqrt{\frac{\omega_c^2}{4} - \frac{\omega_z^2}{2}}$$

Penning trap mass spectrometry

Penning traps

First Precision Mass Measurements of Refractory Fission Fragments

U. Hager,¹ T. Eronen,¹ J. Hakala,¹ A. Jokinen,^{1,*} V. S. Kolhinen,² S. Kopecky,¹ I. Moore,¹ A. Nieminen,¹ M. Oinonen,³ S. Rinta-Antila,¹ J. Szerypo,² and J. Äystö¹

n-rich nuclei are less bound than expected by mass formulae

 \rightarrow neutron drip line moves closer to the valley of stability

Reactions in Nuclear Astrophysics

Si in CasA

K. E. Rehm, NIC-X School 2008, Critical Nuclear Physics

46

Critical reactions in nuclear astrophysics

(p,γ) $\square(\alpha,\gamma)$ **α**(α,p) \square ¹²C + ¹²C fusion **(**n,γ) GT transitions **α**(α,n) (p,α) $(\gamma, p), (\gamma, n), (\gamma, \alpha)$ (p-process), [session 11]

(novae, rp-process) (red giants) (rp-process) (supernovae) (r-process, s-process), [session 9,10] (supernovae), [session 5] (s-process, red giants), [session 10] (novae), [session 14]

In Nature:

v: Maxwellian distribution

In the laboratory:

Reactions between Charged Particles (Astrophysical Reaction Rate)

Example: ${}^{12}C(p,\gamma){}^{13}N$ N_c : ${}^{12}C$ particles/cm³ N_p : protons/cm³ v_o : relative velocity between C and p Rate: $r=N_c \cdot N_p \cdot v_o \cdot \sigma_{p\gamma}(v_o) \{cm^{-3} s^{-1}\}$

Plasma: velocity distribution $\phi(v)$ $v\sigma \rightarrow \langle v\sigma \rangle = \int \phi(v) \cdot v \cdot \sigma(v) dv$ ($< v\sigma >$ reaction rate per particle pair) Particle densities N_i: $\rho = N_i \mu$ $\mu =$ weight of a particle $\rho = N_i A / N_A N_A$: Avogadro's Number $N_i = \rho N_A / A$

Or, for a multi-particle gas with X_i as a mass fraction:

 $N_i = \rho N_A / A X_i$

In normal stellar matter (not in neutron stars)

$$\phi_{i}(v_{i}) = 4\pi v_{i}^{2} \left(\frac{m}{2\pi kT}\right)^{3/2} \exp\left(-\frac{mv^{2}}{2kT}\right)$$
(Maxwellian)

$$<\sigma v > = \iint \phi(v_1)\phi(v_2)\sigma(v_{rel})v_{rel} dv_1 dv_2$$

 $v_1 = V + m_2/(m_1 + m_2)v$ V : center-of-mass velocity $v_2 = V - m_1/(m_1 + m_2)v$ v : relative velocity $(v_1 - v_2)$

$$<\sigma v > = \iint \Phi(V)\phi(v) v \sigma(v) dv dV$$

Where: $\Phi(V) = 4\pi V^2 (M/(2\pi kT))^{3/2} \exp(-MV^2/(2kT))$ $M = m_1 + m_2$ $\phi(v) = 4\pi v^2 (\mu/(2\pi kT))^{3/2} \exp(-\mu v^2/(2kT))$ $\mu = m_1 m_2 / (m_1 + m_2)$ $\langle \sigma v \rangle = \int \phi(v) v \sigma(v) dv$ Because $\int \Phi(V) dV = 1$

$$\langle \sigma \mathbf{v} \rangle = 4\pi \left(\frac{\mu}{2\pi kT}\right)^{3/2} \int \mathbf{v}^3 \,\sigma(\mathbf{v}) \,\exp\left(-\frac{\mu \,v^2}{2kT}\right) d\mathbf{v}$$

or

$$<\sigma v>=(\frac{8}{\pi \mu})^{1/2} \left(\frac{1}{kT}\right)^{3/2} \int \sigma(E) E \exp(-\frac{E}{kT}) dE$$

Need $\sigma(E)$:

Argonne

Non-resonant cross sections

resonant cross sections

To eliminate the strong energy dependence, one takes out the trivial factors : $e^{-2\pi\eta}/E$ and defines a new parameter S (S-Factor) which contains the 'non-trivial' energy dependence:

 $\sigma = S(E)/E e^{(-2\pi\eta)}$

S(E)=σ E $e^{(2\pi\eta)}$

With S(E) one can rewrite $\langle \sigma v \rangle$:

$$<\sigma v > = (\frac{8}{\pi\mu})^{1/2} (\frac{1}{kT})^{3/2} \int S(E) \exp(-E/kT - b/E^{1/2}) dE$$

argument of the exponent:

Maximum of the argument at E_0 :

$$E_0 = (bkT/2)^{2/3}$$
 with $b = (2\mu)^{1/2} \pi e^2 Z_1 Z_2 / \hbar$

or

E₀=1.22(
$$Z_1^2 Z_2^2 \mu T_6^2$$
)^{1/3} [keV]

Gamow peak

T₆: temperature in 10⁶ K

Resonance Reactions

TARGET A

FINAL STATE OF COMPOUND NUCLEUS B

$\sigma_{resonance}$: Breit-Wigner shape

$$\sigma_{i \to f} = \frac{\pi}{k^2} \frac{2J+1}{(2J_1+1)(2J_2+1)} \frac{\Gamma_i \Gamma_f}{(E-E_r)^2 + (\Gamma/2)^2}$$

J: spin of the resonance

- J $_{1,2}$: spin of the particles in the entrance channel
- k: wave number

 $\Gamma_{i,f}$: widths (decay probabilities) in the entrance or exit channel

E_r: resonance energy

 Γ : total width ($\Gamma_i + \Gamma_f + ...$)

$$\int \sigma_{\rm BW}(E) \, dE = \frac{\pi}{k^2} \, \omega \Gamma_{\rm i} \Gamma_{\rm f} \, \pi/(\Gamma/2)$$

$$= 2\pi^2/k^2 \frac{\omega \Gamma_i \Gamma_f}{\Gamma} = \frac{2\pi^2/k^2}{\omega \gamma}$$

$\omega\gamma$: resonance strength

$$\langle \sigma v \rangle = (\frac{2\pi}{\mu kT})^{3/2} \hbar^2 \omega \gamma \exp(-E_r/kT)$$

For several non-overlapping resonances:

$$\langle \sigma v \rangle = (\frac{2\pi}{\mu kT})^{3/2} \hbar^2 \sum \omega \gamma_i \exp(-E_i/kT)$$

High rates for:

1. Large $\omega\gamma$

(p,γ) reactions

Center of activities with radioactive beams Mainly resonant Example ²¹Na(p,γ)²²Mg (TRIUMF)

S. Bishop et al. PRL90, 162501(2003) J. d'Auria et al. PRC69, 065803(2004)

Need 200-500 keV ^{21}Na (T $_{1/2}$ =22.8 s) beams and hydrogen gas target Reaction studied as: $p(^{21}Na,^{22}Mg)\gamma$

"Gamow" windows

K. E. Rehm, NIC-X School 2008, Critical Nuclear Physics

Beam and Recoils

Other Recoil Separators for Astrophysics

DRAGON at TRIUMF ISAC Used to measure ²¹Na(p,γ)²²Mg

ARES at Louvain-Ia-Neuve Used to measure ${}^{19}Ne(p,\gamma){}^{20}Na$

DRS at ORNL HRIBF Used to measure ¹⁸F(d,p)¹⁹F

FMA at ANL ATLAS Used to measure ¹⁸F(p,γ)¹⁹Ne

 (p,γ) reaction with stable nuclei: many examples, cross sections typically ~µb

• with radioactive beams studied so far: ⁷Be(p, γ), ¹³N(p, γ), ¹⁷F(p, γ), ²¹Na(p, γ), ²⁶Al(p, γ)

• need beam intensities > 10^8 /s, which is difficult for radioactive beams

 \rightarrow use indirect techniques

Indirect techniques for (p,γ) reactions:

$$\sigma_{p \to \gamma} \frac{\pi}{k^2} \frac{2J+1}{(2J_1+1)(2J_2+1)} \frac{\Gamma_p \Gamma_{\gamma}}{(E-E_r)^2 + (\Gamma/2)^2}$$

- 1. Determine E_r (e.g. via transfer reactions)
- 2. Determine J (e.g. via angular distributions)
- 3. Determine Γ_{γ} (e.g. via a γ lifetime measurement)
- 4. Determine Γ_{p} (e.g. via elastic scattering)

Other Indirect Techniques:

Coulomb dissociation: (⁸B(γ,p)⁷Be is the time-inverse reaction of ⁷Be(p,γ)⁸B)

⁷Be(p,γ)⁸B

Direct measurement $S_{17}(0)=22.1\pm0.6\pm0.6$ eVb

Indirect measurement S₁₇(0)=20.6±0.8±1.2 eVb

Junghans et al. PRC68, 065803(2003)

Schümann et al. PRC73, 015806(2006)

Other Indirect techniques:

- 1. Transfer Reactions (Asymptotic Normalization Coefficients, ANC) (A. Mukhamedzanov et al. PRC56, 1302(1997)
- 2. γ-spectroscopy following fusion reactions (D. Jenkins et al. PRL 92, 031101 (2004)
- 3. γ-spectroscopy following knockout reactions (R. Clement et al., PRL 92 172502, (2004))
- 4. (³He,d) reactions (C. L. Jiang et al., subm. to PRC)

(α,γ) Reactions								
cross sections ~ $1/100 \sigma(p,\gamma)$								
Important examples:								
$\alpha + \alpha + \alpha \rightarrow ^{12}C$	bridging the mass 8 gap							
¹² C(α,γ) ¹⁶ O	'most important reaction in Nuclear Astrophysics							
¹⁵ Ο(α,γ) ¹⁹ Ne	breakout from the hot CNO cycle							
⁴⁰ Ca(α,γ) ⁴⁴ Ti	production of the gamma tracer ⁴⁴ Ti							

Direct measurements of ⁴⁰Ca(α,γ)⁴⁴Ti (amount of ⁴⁴Ti in CasA SN remnant)

- 1977: high intensity ⁴He beams + ⁴⁰Ca target, γ detection
- (E. Coopermann et al., Nucl. Phys. A284, 163 (1977))
- Target deterioration
- Detection efficiency
- Background

New approaches (⁴⁰Ca beam and ⁴He target):

Accelerator mass spectrometry

(H. Nassar et al., PRL96, 041102(2006)

Measurements in inverse kinematics

(C. Vockenhuber et al., PRC76, 035801(2007))

CASSIOPEIA A

Argonne

Problems with ⁴⁴Ti signal

Amount of ⁴⁴Ti measured in Cas A:

160±60 μM_☉ (3x10²⁶ kg)

Amount of ⁴⁴Ti <u>calculated</u>:

20 - 80 μM_{\odot}

(for comparison: mass of the earth ~ $6x10^{24}$ kg)

Mn ^{1246°} ^{2061°}	Mn44	Mn45	Mn46 41 ms	Mn47 100 ms	Mn48 158.1 ms	Mn49 382 ms	Mn50 283.88 ms	Mn51 46.2 m	Mn52 5.591 d	Mn53 3.74E+6 y
+2+3+4+7					4+	5/2-	0+	5/2-	6+	7/2-
0.000031%			ЕСр	ЕСр	ECp,ECα,	EC	EC	EC	EC	EC
Cr42	Cr43	Cr44	Cr45	Cr46	Cr47	Cr48	Cr49	Cr50	Cr51	Cr52
	(3/2+)	53 ms 0+	50 ms	0.26 s 0+	500 ms 3/2-	21.56 h 0+	42.3 m 5/2-	1.8E+17 y 0+	27.702 d 7/2-	0+
	ECp,ECα,	ЕСр	ЕСр	EC	EC	EC		ECEC 4.345	EC	83.789
V41	V42	V43	V44	V45		V47	V48	V49	V50	V51
		800 ms (7/2-)	90 ms (2+)	54/ms 7/2-	(α,p)	32.6 m	15.9735 d 4+	530 d 7/2-	1.4E+1/y 6+	7/2-
		EC	* ECα	EC	C.C	EC	EC		EC,β-	99.750
Ti40	Ti41	Ti42	Ti43	Ti44	Ti45	Ti46	Ti47	Ti48	Ti49	Ti50
50 ms	80 ms	199 ms	509 ms	63 y	184.8 m	0+	5/2-	0+	7/2-	0+
EC.	EC.	EC	EC.	FC	FC III	0.0	5/2-			
E. 20	Se40	EC Sed1	C-42	8-42	EC Sadd	8.0	1.3	75.8	5.5	5.4
5039	182.3 ms	596.3 ms	681.3 as	3.891 h	3.927 h	5645	83.79 d	3.3492 d	5C48 43.67 h	57.2 m
(7/2-)	4-	7/2-	*	7/2-	2+ *	7/2- *	4+	7/2-	6+	7/2-
	ECp,ECα,	EC	Y.C.	EC	EC	100	β·	β-	β-	β-
Ca38	Ca39	Ca40	Ca41	Ca42	Ca43	Ca44	Ca45	Ca46	Ca47	Ca48
0+	3/2+	0+	7/2-	0+	7/2-	0+	7/2-	0+	4.330 u 7/2-	0L+18 y 0+
EC	EC	96.941	EC	0.647	0.135	2.086	β-	0.004	β-	β-,β-β- 0.187
K37	K38	K39	K40	K41	K42	K43	K44	K45	K46	K47
1.226 s 3/2+	7.636 m 3+	3/2+	1.277E+9 y 4-	3/2+	12.360 h 2-	22.3 h 3/2+	22.13 m 2-	17.3 m 3/2+	105 s (2-)	17.50 s 1/2+
EC	EC *	93.2581	EC,β·	6.7302	β-	β-	β-	β-	β-	β-
Ar36	Ar37	Ar38	Ar39	Ar40	Ar41	Ar42	Ar43	Ar44	Ar45	Ar46
0+	35.04 d	0+	269 y	0+	109.34 m	32.9 y	5.37 m (3/2 5/2)	11.87 m	21.48 s	8.4 s
0.007	FC	0.072	R-	00,000	R-	α.	(J) 2, J) 2)	8-	β	8.
0.337	EC	0.063	P	99.600	þ	p	p-	P	p.	p.

Direct (α, γ) measurements (with stable beams)

Experimental setup for the ${}^{40}Ca(\alpha,\gamma){}^{44}Ti$ experiment :

1. Bombard ⁴He gas with a beam of ⁴⁰Ca particles (⁴⁰Ca + ⁴He \rightarrow ⁴⁴Ti) (done at Argonne)

⁴He

⁴⁰Ca

2. Identify and count the number of ⁴⁴Ti particles implanted into the copper block (done at the Weizmann Institute in Israel)

Indirect (α, γ) measurements

$$\sigma(\alpha,\gamma) = \frac{\pi}{k^2} \frac{2J+1}{(2J_1+1)(2J_2+1)} \frac{\Gamma_a \Gamma_{\gamma}}{(E-E_r)^2 + (\Gamma/2)^2}$$

for ${}^{15}O(\alpha, \gamma){}^{19}Ne$:

Need: Γ_{γ} (from T_{γ})

 $\Gamma_{lpha}/\Gamma_{\gamma}$

Er

J

Argonne

Argonne

The (α,p) reaction in the (rp) process

Direct measurement of ⁴⁴Ti(α,p)⁴⁷V in inverse kinematics

A. Sonzogni et al., PRL84, 1651(2000)

Beam contaminants at ATLAS(⁴⁴Ti) (measure ⁴⁴Ti(α ,p)⁴⁷V and ⁴⁴Ca(α ,p)⁴⁷Sc)

⁴He(⁴⁴Ti,⁴⁷V)p or ⁴He(⁴⁴Ca,⁴⁷Sc)p

<u>The ¹⁸Ne(α,p) reaction:</u> breakout from the hot CNO cycle

А

Direct measurement of ¹⁸Ne(α,p)²¹Na:

For recoil separator would need a large acceptance

K. E. Rehm, NIC-X School 2008, Critical Nuclear Physics

Argonne

<u>Indirect methods (α,p):</u>

Inverse reactions:

²¹Na(p, α)¹⁸Ne, see: S. Sinha et al., BAPS 2004 2004 and to be publ.

Thick target technique:

C. B. Fu et al. PRC76, 0212603(2007)

Fusion reactions in nuclear astrophysics Carbon burning

How to extrapolate towards lower energies Example: ¹²C + ¹²C fusion

Problems:

Cross sections are in the pb range
Data from various groups don't agree
There can be resonances at low E
How to extrapolate (fusion hindrance)

- C. L. Jiang et al., PRC 75, 015803(2007)
- L. R. Gasques et al., PRC76, 035802(2007)

Need experimental data!

A new technique for particle detection in inverse kinematics

Simple kinematics

p(44Ti,p')44Ti kinematics

K. E. Rehm, NIC-X School 2008, Critical Nuclear Physics

Advantages of Solenoid Spectrometer

Automatic particle identification

Excellent center-of-mass energy resolution

High detection efficient

Simple detector and electronics - few channels

Excellent center-of-mass angle resolution

