Abundance Constraints

on Sources of Nucleosynthesis, and on the Chemical Evolution of the Universe and its Components

- Characteristic Cosmic Gamma-Rays -

NIC School 2008

24 Jul 2008

by Roland Diehl

Outline

- ☆ Themes of my lectures, the context, the role of abundances
- * How cosmic gamma-rays set "abundance constraints"
- * What we learned from gamma-ray constraints
- ☆ How else do we obtain "abundance constraints"
- ☆ What we learned from "abundance constraints"

Nuclear Astrophysics School NIC", Argonne Natnl Labs, 23-26 Jul 2008

The General Context:

How Do Nucleosynthetis Sources Enrich the Universe with Heavy Elements?

☆ Nuclear Reactions in Stars and Supernovae Rearrange Baryons -> New Atoms

New Atoms are Mixed into ISM which Forms New Stars & Planets Nuclear Astrophysics School "NIC", Argonne Natril Labs, 23-26 Jul 2008

Abundances: An Astronomical Measurement

☆ Relevance of Knowledge about Cosmic Abundances:

Constraints for Nucleosynthesis

- Nuclear Reactions in Cosmic Environments
- Astrophysical Conditions in Nuclear-Burning Sites

Constraints for Evolutionary Processes in the Universe

- Formation of Stars and Stellar Assemblies...Galaxies
- Enrichment of Cosmic Gas Supplies with Nucleosynthesis Products

One of the Key Tools of Astrophysics:

Where do specific atomic nuclei and their abundance originate?

Diversity of Complementing Observing Methods

Nucleosynthesis Products: Where We See It

☆ We Would Like to Know Compositions in...

Intergalactic Medium, Galaxies

Interstellar Medium

Supernovae, Novae, and their Remnants

Planetary Nebulae

(for the study of...) cosmic evolution galaxy evolution, mixing specific sources specific sources

☆ We Can Measure Compositions in

- Material Samples
 - » Meteorites, Planets, Comets...
 - » Cosmic Rays ('CRs'), Solar Energetic Particles ('SEPs')
 - » Meteoretic Inclusions: Presolar Grains

Stellar Photospheres

- » Stars with Original/Natal Composition in Photosphere
- » Stars with Internal Mixing
- Gas Clouds

- » Absorbing ISM in front of Stars
- » Absorbing IGM in front of Quasars & Galaxies

Nuclear Astrophysics School "NIC", Argonne Natnl Labs, 23-26 Jul 2008

Abundance Observation Sites (1 of 4)

• Earth Crust

☆ Planet Formation from Condensed Matter

Corrections for

- » Planet Formation Physics
- » Gravitational Differentiation
- » Chemical Differentiation
- » Radioactive Decays

Meteorites

🛠 Rocks

^CDiversity

- » Meteorites with/without Glass-Like Inclusions (Chondrites/Achondrites)
- » Stony Iron Meteorites
- » Iron-Like Meteorites

Corrections for

- » Rock Formation
- » Radioactive Decays
- » Cosmic-Ray Bombardement
- » Outgassing
- » Chemical Differentiation
- » Presolar Inclusions

Abundance Observation Sites (2 of 4)

• Solar Energetic Particles

☆ Particles Accelerated from Solar Activity

Corrections for

- Acceleration Process
 (First-Ionization Potential Selection)
- » Acceleration Region Sampling Bias

Cosmic Rays

* Particles Accelerated from ??? (ISM Shock Regions?)

Corrections for

- » Acceleration Process (First-Ionization Potential Selection)
- » Acceleration Region Sampling Bias
- » Propagation Effects (Spallation Secondaries & Losses)
- Interstellar Medium

Particles Mixed from Turbulence, with Source Injections

- Corrections for
 - Propagation Effects (Gravitational Selections, Magnetic-Field Selections)
 - » Condensations on Dust Grains

Nuclear Astrophysics School "NIC", Argonne Natnl Labs, 23-26 Jul 2008

Abundance Observation Sites (3 of 4)

• Stellar Photospheres (general)

* Gas Globe, Stabilized from Gravity & Nuclear Burning in Interior

^CDiversity

- » Evolved Stars (Giant Phases, i.e. after "Dredge-Ups"; C-Stars; WR Stars)
- » Variability (AGB Stars, RCrB Stars)
- » Binaries (BaII Stars, Be Stars)

Corrections for

- » Atmospheric Structure Details
- » Radioactive Decays
- » Chemical History of Birth Place in Galaxy
- » Extrastellar Contributions (anomalous Cosmic Rays, Dust)
- Solar Photosphere

☆ Solar System Formation 4.6 Gy ago

- Corrections for
 - » Solar-System Birth Place in Galaxy
 - Extrasolar Contributions (anomalous Cosmic Rays, Dust)

Abundance Observation Sites (4 of 4)

Gas as Radiation Absorber

☆ Gas Assembly, Illuminated from Back Side

^CDiversity

- » Interstellar Gas Against Background Stars
- » Interstellar and Intergalactic Gas Across Range of Redshifts
- » Circumstellar Gas Around a Source

Corrections for

- » Background-Source Spectral Energy Distribution
- » Foreground or Background Absorbers
- » Selection Effects due to Background Source Type

Hot, Recombining Gas

* Hot States of Interstellar/Intergalactic Gas

^CDiversity

- Interstellar Gas around an Energetic Source (HII Regions, PWNe, SNR)
- » Interstellar and Intergalactic Gas Heated by Diversity of Sources (SB's, Starburst Gal., ICM)

Corrections for

- Central-Energy Source Properties (time variations, energy flow variations)
- » Non-Equilibrium States of Recombining Gas

Roland Diehl

Astronomical Observations throughout the e.m. Spectrum

Spectroscopic Studies of Cosmic Elements

* Mostly: Atomic-Shell Absorption-Line Spectra

Galactic Archeology; Metallicity Gradients; Cosmic Chemical Evolution

☆ Specific Enhancements:

Atomic Emission & Recombination-Line Spectroscopy -> Gas in Special Sites
Molecular Lines -> Cold Gas/Clouds

and: Nuclear Lines, Annihilation Lines, Cyclotron Lines,... -> ...

Nuclear Astrophysics School "NIC", Argonne Natnl Labs, 23-26 Jul 2008

From Atomic to Nuclear Physics

	1 (LA) Hydrogen 1 H, 2003 1 H, 2005 1 H, 2005 1 H, 2005 1 L,	$\begin{array}{c} \frac{4^{2}}{7^{2}} \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 3 \\ 3 \\ 1 \\ 2 \\ 3 \\ 3 \\ 3 \\ 1 \\ 3 $	3 (IIIB) Scandium 2 Sc. 1517 2 - 53 44.95501	4 (IVB) 5 1 1 1 1 1 1 1 1 1 1 1 1 1	Group Idement F2 CP Costates At.Weight bundance% to Table (VB) 6 (0) madium Chro v 19/97 v 19/97 v 19/97 So,0415 5 So,0415 5	VIB) 7 (VII milum Mangan 1997; 2 Mn.sc 22346 2 2000 19961 2 2000	B) 8 (VIII ¹²⁴⁶ 2 Fe., ¹⁵ ¹²⁴⁶ 2 Fe., ¹⁵ ¹⁴ 2 Fe., ¹⁵ ¹⁵ 2 Fe., ¹⁵ ¹⁴ 2 Fe., ¹⁵ ¹⁵ 2 Fe., ¹⁵ ¹⁵ 2 Fe., ¹⁵ ¹⁵ 2 Fe., ¹⁵ ¹⁶ 2 Fe., ¹⁶ ¹⁶ 2 Fe., ¹) 9 (VIII) Cobalt ¹² Co. ¹⁴⁵⁵ ¹³ 2.2.3 ¹⁵ 2.2.3 ¹⁵ 3.9.33200	10 (VIII) Nickel Ni 1455 12 -2-3 58,6034	11 (IB) 1 Copper 2 Cn 108462 2-1 1	13 (B 3 B 6. 2 (IIB) 2 (IIB)	IIIIA) 14 (IV) oron Carbo 20351 2 C 5 30007 20131 2 C 9 4 C 10.811 12.6 9010*50 30110 2015*1 28.6 30.81533 30.81533 35.76*2 2 3 14 20.723 14	VA) 15 (V/ Miroge Marchine Construction Marchine Construction Ma	A) 16 (VIA) $\frac{0.000}{1000} = 0.0000000000000000000000000000000$) 17 (VIIA) Florinc $\frac{9}{12} \frac{1}{5} \frac{1}{$	$\begin{array}{c} 8 \text{ (VIIIA)} \\ \hline \text{Holium} \\ ^2 \text{Holium} \\ ^2 2 \text{Geodes} \\ & 226.96^{\circ} \\ & 0.226.96^{\circ} \\ & 4.002602 \\ & 8.9\% \\ & 8.0080 \\ & 208.7^{\circ} \\ & 9.0080 \\ & 208.7^{\circ} \\ & 0.112\% \\ & \text{Argon} \\ & 20.1797 \\ & 0.112\% \\ & \text{Argon} \\ & 21.22.3^{\circ} \\ & 0.00320\% \\ & \text{Krypon} \\ & 228.7^{\circ} \\ & 39.948 \\ & 0.000320\% \\ & \text{Krypon} \\ & 228.7^{\circ} \\ & 39.948 \\ & 0.00320\% \\ & \text{Krypon} \\ & 218.5^{\circ} \\ & 38.380 \\ & 38.80 \\ \end{array}$	
Si 32659 +2+4.4 28.0855 0.00326%	Si22 6 ms 0+	Si23	Si24 102 ms 0+	Si25 220 ms 5/2+	Si26 2.234 s 0+	Si27 4.16 s 5/2+	Si28	Si29	Si30 0+ 3.10	Si31 157.3 m 3/2+ 8:	Si32 172 y 0+	Si33 6.18 s	Si34 2.77 s 0+	Si35 0.78 s	Si36 0.45 s 0+ 8-n	Si37	Si3 0+
Al 2519 +3 26.981538 0.000277%	Al21	Al22 70 ms	Al23 0.47 s	Al24 2.053 s 4+ εCα	Al25 7.183 s 5/2+ EC	Al26 7.4E+5 y 5+ EC	Al27 5/2+	Al28 2.2414 m 3+ β-	Al29 6.56 m 5/2+ β-	A130 3.60 s 3+ β-	Al31 644 ms (3/2,5/2)+ β-	Al32 33 ms 1+ β-	Al33	Al34 60 ms	AI35 150 ms	A136	Al3
Mg 1090 ⁺² 24.3050 0.00350%	Mg20 95 ms 0+ ECp	Mg21 122 ms (3/2,5/2)+ ECp	Mg22 3.857 s 0+ EC	Mg23 11.317 s 3/2+ EC	Mg24 0+ 78.99	Mg25 5/2+ 10.00	Mg26 0+ 11.01	Mg27 9.458 m 1/2+ β·	Mg28 20.91 h 0+ β·	Mg29 1.30 s 3/2+ β-	Mg30 335 ms 0+ β-	Mg31 230 ms	Mg32 120 ms 0+ βm	Mg33 90 ms βn	Mg34 20 ms 0+ β ⁻ n	Mg35	Mg: 0+
Na18	Na19 p	Na20 447.9 ms 2+ ΕCα	Na21 22.49 s 3/2+	Na22 2.6019 y 3+	Na23 3/2+ 100	Na24 14.9590 h 4+ β-	Na25 59.1 s 5/2+ β-	Na26 1.072 s 3+ β-	Na27 301 ms 5/2+ β-n	Na28 30.5 ms 1+ β-n	Na29 44.9 ms 3/2 β-n	Na30 48 ms 2+ β-n,β-2n,	Na31 17.0 ms 3/2+ β-n,β-2n,	Na32 13.2 ms (3-,4-) β-n,β-2n,	Na33 8.2 ms β-n,β-2n,	Na34 5.5 ms β-2n	Na3 1.5 n β-n
	‡ Ac	ctinides	$\begin{array}{c} 110710111 \\ & 2 \\ 8 \\ 18 \\ 18 \\ 18 \\ 32 \\ 10 \\ 232.0381 \\ 2 \\ 1.09\times10^{-10}\% \\ 2 \end{array} \begin{array}{c} 2 \\ 32 \\ 2 \\ 32 \\ 2 \\ 32 \\ 32 \\ 32 \\ 3$	Pa ₉₁ 1572° 2 +5+4 231.03588 9 2 2	Annon Kepu 92 4131* 8 +3+4+5+6 32 +1 238.0289 9 -94×10 ⁻¹¹ % 2	$\begin{array}{c} \mathbf{u}_{1111} & \mathbf{P}_{111} \\ 0_{93} & 8_{18} \\ 1_{18} & 1_{18} \\ 1_{14} + 5 + 6 \\ 1_{23} & 1_{24} \\ 1_{23} & 1_{24} \\ 1_{23} & 1_{24} \\ 1_{24} & 1_{24} \\ 1_{2} \end{array}$	$\begin{bmatrix} 640^{\circ} \\ 3228^{\circ} \\ 18 \\ 18 \\ 18 \\ 18 \\ 18 \\ 18 \\ 18 \\ 1$	$\begin{array}{c c} & \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline & & & & & & & & & & & & & & & & & &$	2 8 1050° 18 8 1050° 18 97 32 +3+4 27 [247] 2	$\begin{array}{c} \begin{array}{c} & & & \\ & & $	risteniltin 860° 2 8 Fi +3 [252] 30° 2 8 Fi 18 32 + 30 2	$\begin{array}{c} \begin{array}{c} \text{Memory}\\ 1527^{\circ} \\ \mathbf{n}_{100} \\ 3 \\ 257 \\ 257 \\ 3 \\ 257 \\ 2 \end{array} \begin{array}{c} \text{Memory}\\ \text{s} \\ 32 \\ 32 \\ 2 \\ 2 \end{array} + 2+3 \\ 2 \\ 2 \end{array}$	$\begin{array}{c c} & & & & \\ & & & \\ 01 & & & \\ 01 & & & \\ 18 & & & \\ 32 & +2+3 & \\ 58 & & & & \\ 2 & & & \\ 2 & & & \\ 2 & & \\ \end{array}$	$\begin{bmatrix} 827^{6} \\ 3 \\ 18 \\ 18 \\ 32 \\ 32 \\ 32 \\ 32 \\ 2 \end{bmatrix} \begin{bmatrix} 262 \\ 2 \end{bmatrix}$	71		

☆ Cosmic Nucleosynthesis Produces New **Isotopes**

Signostics of Nuclear Fusion Reactions → Thermodynamic Variables in Hot (GK) Sites

Nucleosynthesis Study with Gamma-Rays -> Physics / Processes at/inside the Nucleosynthesis Site

Isotope	Mean Lifetime	Decay Chain	γ -Ray Energy (keV)	
⁷ Be	77 d	$^{7}\text{Be} \rightarrow ^{7}\text{Li}^{*}$	478	
⁵⁶ Ni	111 d	56 Ni $\rightarrow ^{56}$ Co* $\rightarrow ^{56}$ Fe*+e ⁺	158, 812; 847, 1238	
⁵⁷ Ni	390 d	⁵⁷ Co→ ⁵⁷ Fe*	122	
²² Na	3.8 y	22 Na $\rightarrow ^{22}$ Ne* + e ⁺	1275	
⁴⁴ Ti	89 y	⁴⁴ Ti→ ⁴⁴ Sc*→ ⁴⁴ Ca*+e ⁺	78, 68; 1157	
²⁶ A1	1.04 10 ⁶ y	$^{26}\text{Al} \rightarrow ^{26}\text{Mg}^* + e^+$	1809	
⁶⁰ Fe	2.0 10 ⁶ y	60 Fe \rightarrow 60 Co* \rightarrow 60 Ni*	59, 1173, 13/2	
e⁺	10⁵y	$e^++e^- \rightarrow Ps \rightarrow \gamma\gamma$	511, 511	

511 keV, ⁷Be -> Novae -> p-Captures, β⁺ Decays -> ¹⁹F Production...

²⁶Al -> Reaction Path Details in Stars/SNe, v-Process
-> Metal/Fe Ratio, Si/Fe

⁴⁴Ti, ⁵⁶Ni -> Most Stable Isotopes ⁵⁶Ni/⁴He, Freeze-Out of NSE -> Metal/Fe Ratio, Heavies/Fe

Gamma-Rays for Cosmic-Isotope Measurements Special Characteristics:

Gamma-Ray Astronomical Telescopes: Interaction of HE photons with matter

Nuclear Astrophysics School "NIC", Argonne Natnl Labs, 23-26 Jul 2008

MeV Range Gamma-Ray Telescope Principles

• Simple Detector (& Collimator)

(e.g. HĚAO-C, SMM, CGRO-OSSE) Spatial Resolution (=Aperture) Defined Through Shield

Coded Mask & Detector Array

(e.g. SIGMA, INTEGRAL, SWIFT) Spatial Resolution Defined by Mask & Detector Elements Sizes

Compton Telescopes (Coincidence-Setup of Position-Sensitive Detectors) (e.g. CGO-COMPTEL, MEGA, ACT,...) Spatial Resolution Defined by Detectors' Spatial Resolution

Achievable Sensitivity: ~10⁻⁵ ph cm⁻² s⁻¹, Angular Resolution \geq deg

"Supermirrors": Extending X-Ray Optics to γ -Rays

☆ "NUSTAR" Mission Concept

Two-Spacecraft Formation
Optics with

- 130 Nested Shells of Grazing-Incidence Mirrors: W/SiC and Pt/SiC
- Surface Reflectivity up to W K-Edge @69 keV
 + Grazing Incidence
 -> Use Up To 80 KeV

10 m Focal Length

40 arcsec Spatial Resol.

PI: F. Harrison / CalTech

🛠 Status:

 Phase A Study 2003-05, Selection 2005 for Launch in 2009
 On Hold Since 2006 Energy range Angular resolution (HPD) FOV Source positions Spectral resolution Timing resolution Line sensitivity (10^6 s, 68 keV) Continuum sensitivity (10^6 s, 3σ , $\Delta E/E$) = 0.5 Background in HPD/module (40 keV) Effective area (20 keV) ToO response

Optics bench

6-80 keV 40" 8.4 × 8.4' 5" 900 eV 68 keV 0.1 ms 10^{-7} ph/cm²/s 0.7 μ Crab (20 keV) 6 μ Crab (60 keV) 1.1 × 10^{-5} cts/s/keV 500 cm² <24 h

Focal plane module

Spacecraft

X-Ray Telescopes: Concentrating Radiation

☆ Concentration of Cosmic Radiation

- Signal

- ~ Telescope Area
- Background ~ Detector Volume

Signal/Background Ratio Improves with Radiation Concentration

Balloon Experiment with Laue Lens: "Claire" (Gap->Bordeaux, June 2001)

courtesy P.von Ballmoos

Example: SNIa with COMPTEL vs. GRI

* A Narrow-Field Gamma-Ray Lens Could Substantially Advance Sensitivity!

Collimated Gamma-Rays: OSSE on CGRO

☆ Tungsten Collimators

 Field of View 3.8° × 11.4°
 Scanning Observations, Deconvolution Imaging Analysis

The Japanese 'NEXT' Mission

☆ Combination of

Fig. 1 Conceptual drawing of a SGD detector unit.

Hard-X-Ray Supermirror Telescope
 Soft Gamma-Ray Collimated Telescope

"Imaging" using Earth Occultation

EARTH

METHOD

OCCULATION

- **Data Selection**
 - ☆ "Source" = **Region of Interest Exposed** ☆ "Background" =
 - **Region of Interest Behind Earth**
- Applications ☆ BATSE on CGRO

Monitoring of Point Sources; Harmon et al. 1991: ...

☆ RHESSI

Imaging Diffuse Galactic Emission: Smith 2003

INNER GALAXY

020

The Imaging Compton Telescope Compton Scattering: A Coincidence Technique

Nuclear Astrophysics School "NIC", Argonne Natnl Labs, 23-26 Jul 2008

Pioneering Space Compton Telescope: COMPTEL on CGRO (1991-2000)

Interaction sequence obtained by time-of-flight (TOF) measurement.

Advantage: clear separation of forward and backward events. Disadvantage: low efficiency due to solid angle effect.

TOF [ch] nne Natnl Labs, 23-26 Jul 2008

Compton Telescopes

Nuclear Compton Telescope (NCT)

TIGRE

LXeGRIT

FIGURE 1. Schematic of the liquid xenon time projection chamber

Nuclear Astrophysics School "NIC", Argonne Natnl Labs, 23-26 Jul 2008

Coded Mask Imaging

INTEGRAL: Ge γ -Spectrometry in Space!

17 October 2002: 06:41 Launch from Baikonur / Kasachstan

Summer 2008:

Healthy Spacecraft & Instruments Mission Operations till 2012+ sPI: Coded-Mask Telescope 15-8000 keV Energy Resolution ~2.2 keV @ 662 keV Spatial Precision 2.6° / ~2 arcmin Field-of-View 16x16°

Nuclear Astrophysics School "NIC", Argonne Natnl Labs, 23-26 Jul 2008

Future Mission Options: 0.1...100 MeV

Large Area Coded Aperture--(EXIST...)

Laue Gamma-Ray Collector (Max)

Advanced Compton Telescopes (MEGA, ACT)

Gamma Ray Fresnel Lens (Multiple Spacecraft)

Nuclear Astrophysics School "NIC", Argonne Natnl Labs, 23-26 Jul 2008

Astronomy in the Range of Nuclear Lines

- Sources of Cosmic Gamma Ray Line Radiation:
 - ☆ Typical Intensities ~10⁻³... 10⁻⁶ ph cm⁻² s⁻¹
 - ☆ Embedded / Occulted Sources
 - ☆ Examples:

Interstellar-Medium InteractionsCosmic Radioactivities

- Instrumental Constraints:
 - Low Interaction Cross Sections
 - * No/Problematic Reflecting Surfaces
 - * Instrumental Background from Cosmic-Ray Activation

Future Goals for γ -Ray Line Astronomy

Capabilities for Nuclear Astronomy

- Experimental Technology
 'Waterscheds'
 - near ~100 keV: Fading Mirror Performance
 - below ~100 MeV: Fading Tracking Detector Efficiency
 - the Nuclear Energy Range is Difficult
 - CR-> Radioactivities

What Did We Achieve?

* Comments on Science Results, and How They Have Been Obtained

Nuclear Astrophysics School "NIC", Argonne Natnl Labs, 23-26 Jul 2008

A Supernova

How Does a SNIa Explode?

- C Ignition at M_{Ch} Limit (possibly many ignition points)
- Turbulent Flame Propagation
- WD Expansion -> Flame Extinction
- Issues: Rapid Time Scales!
 - » Nuclear Burning C+O->⁵⁶Ni...
 - » Expansion
 - » Mixing

Measure Amount and Velocity Distribution of ⁵⁶Ni Directly in γ-Rays!

Gamma-Rays from Supernovae Ia

- Rarely SNIa ⁵⁶Ni Decay Gamma-Rays are Above Instrumental Limits (~10⁻⁵ ph cm⁻² s⁻¹)
 - ~2 Events / 9 Years CGRO
 - ~2 Events / 2 Years INTEGRAL Mission

COMPTEL

✓ Signal from SN1991T

 (3σ) (13 Mpc) → 1.65 M_☉ of ⁵⁶Ni!
 ✓ Upper Limit for SN1998bu (11 Mpc)

 ☆ The ⁵⁶Ni Power Source:

 0.5 M_☉ of ⁵⁶Ni??

* Which Model Flavor?

[©]W7 / HeD / DDT / DD /...

Still No Luck with SNIa Events

SNela (1990-2005) Galactic coordinates

Supernova Remnants: Evolutionary States

Gamma-Rays Can Extend Presently-Favourable X/R/O Regime:

- ☆ Search for New SNR
- ☆ Diagnostics from Line Shape & Light Curve

Nuclear Astrophysics School "NIC", Argonne Natnl Labs, 23–26 Jul 2008

Core Collapse-Supernovae: Model

Nuclear Astrophysics School "NIC", Argonne Natnl Labs, 23-26 Jul 2008

0

 \mathbf{O}

Nuclear-Physics Issues in CC-Supernova Models

- O 3D-Effects Important for Energy Budget AND Nucleosynthesis
 O Location of Ejecta/Remnant Separation?
- O ⁴⁴Ti Produced at r < 10³ km from QSE/Si-Burning & α-rich Freeze-Out,
 => ⁴⁴Ti Gamma-Rays are Unique Probe (+Ni Isotopes)

SN1987A

The late SN light originates in enegy input from ⁴⁴Ti decay

^{CP}Estimate from light-curve modelling (Fransson & Kozma 1993; 2002)

- (1.5 ±1.0) 10⁻⁴ M_{\odot} of ⁴⁴Ti

Estimate from late optical emission (d2875) (Chugai et al. 1997)

- (1-2) $10^{-4} M_{\odot}$ of 44 Ti

^C Upper limit from FeII lines in IR (= main emission in late phase) (25.99 μm, d3999, d3425, Lundquist et al. 1999, 2001)

- <1.1 10⁻⁴ M_{\odot} of ⁴⁴Ti

© Direct ⁴⁴Ti Gamma-Ray Measurements not Feasible with Current Instruments Nuclear Astrophysics School "NIC", Argonne Natril Labs, 23-26 Jul 2008 Roland Diehl

FIGURE 1. Chandra ACIS (in the 0.3-8 keV band) false-color images of SNR 1987A. In each panel

the observation date and age (days since the SN, in parentheses) are presented.

Fig. 1. Evolution of temperature for the iron-rich region in SN 1987A, together with the fluxe of the strongest Fe II lines. The IR-catastrophe is seen to set in at \sim 600 days.

⁴⁴Ti γ -rays from Cas A

Nuclear Astrophysics School "NIC", Argonne Natnl Labs, 23-26 Jul 2008

Cas A: A Well-Studied Young Nearby SNR

Counts/s/keV ...

0.01

full model in red.

Energy (keV)

XMM-Newton

Fig. 2. An example of a spectral fit within a single $20'' \times 20''$ pixel - cool component in blue, hot component in green and

Nuclear Astrophysics School "NIC", Argonne Natnl Labs, 23-26 Jul 2008

- ~330 year-old SNR at ~3.4 kpc
- Massive Progenitor (10-25 M_{o})
- Filaments, Fast Ejecta (knots), Fe-rich Clumps, No Onion-Shell-Like Elemental Morphology, Jet: Asymmetric Explosion
- ⁴⁴Ti (and ⁵⁶Ni) Ejection
- Unseen SN -> CSM Dust
- Central Object (NS/BH?)

- Core Collapse SN with Unusual Asymmetries?
- ⁴⁴Ti Emission Affected by Ionization?

SPI and ⁴⁴Ti from Cas A

- Joint analysis of all lines with SPI (INTEGRAL's spectrometer)
- Total significance ~3 sigma
- Flux consistent with IBIS (2.1±0.7)x10⁻⁵ ph cm⁻²s⁻¹
- Additional line broadening: 430±240 km/s
- Bulk velocity: 500±200 km/s (redshifted, like Fe-K?)
- I.e. ⁴⁴Ti is within reverse shock (i.e. cold/freely expanding)

Jacco Vink Integral observations of Cas A: ⁴⁴Ti properties & hard X-ray continuum 14 Schloß Ringberg, January 8, 2008

SNR Kinematics with γ-Ray Lines

Internal Consistency Checks on Intensity, Systematics

The Sky in ⁴⁴Ti Gamma-Rays

The et al. 2006

Nuclear Astrophysics School "NIC", Argonne Natnl Labs, 23-26 Jul 2008

"Normal" Core Collapse Supernovae (?)

Consistency Check: Cas A vs. what we know about ⁴⁴Ti...

- A4Ti from SAD/Models/SN1987A/γ-Rays, vs. ⁵⁶Ni
- ☆ Only Non-Spherical Models ★ ★ Reproduce Observed Ratios
- Sky Regions with Most Massive Stars are ⁴⁴Ti Source-Free (COMPTEL, INTEGRAL)

Non-spherical explosions?? (->GRB)

```
Need Event Statistics, <sup>44</sup>Ti Spectra
```

Novae

- Classical Novae:
 - * Accreting WD in Binary System
 - Runaway H Burning with Nuclear Processing of Upper WD Layer (p process)
 - ☆ Ejection of ~10⁻⁴ M_{o}
- Issues:
 - Burning Time Profile
 Fuel Composition and Mixing
 Ejected Mass
 Nuclear Reactions

Nova Diagnostics with Nuclear Lines

Nuclear Astrophysics School "NIC", Argonne Natnl Labs, 23-26 Jul 2008

Nova Gamma-Ray Light Curves

Nuclear Astrophysics School "NIC", Argonne Natnl Labs, 23-26 Jul 2008

Still No Nova Lines Detected

Expectations for I_{22Na} ~ Factor 10 Below Instrumental Sensitivities •

SPI Galactic Bulge Skymap

Testing for a Nova Galaxy Model

Nuclear Astrophysics School "NIC", Argonne Natnl Labs, 23-26 Jul 2008

Partial Summary: Methods of Cosmic Gamma-Ray Measurements

- Gamma-Ray Telescopes are Complex Instruments
 - ☆ Focusing Optics is Hardly Obtainable
 - ☆ Casting a Shadow is a Working Compromise
 - ☆ Multi-Detector Coincidence Instruments are Most Promising
 - ☆ Backgrounds from Internal Radioactivity are High
 - Analysis Techniques are Based on Constrained Deconvolutions
- The Brightest Sources Have Been Seen
 ☆ ²⁶Al Line Science is an "Astronomy"
 ☆ ⁶⁰Fe and e+ Annihilation Adds Specific Aspects
 ☆ ⁴⁴Ti is a Key Diagnostic for SN Interiors

Gamma-Ray Lines Constraints on Cosmic Nuclei: Summary (I)

- Live Cosmic Nucleosynthesis Detected. More?
 - ISM: e^{+ 26}Al ⁶⁰Fe; SNae: ⁵⁶Ni, ⁵⁷Ni, ⁴⁴Ti ²²Na?
- Cosmic Nucleosynthesis Environments Being Studied
 44Ti

d e⁺ Annihilation

Nuclear Astrophysics School "NIC", Argonne Natnl Labs, 23-26 Jul 2008