Theoretical calculation of neutrino fluxes from the Sun



# Age determination

- Globular clusters: most ancient objects in the Galaxy
- Dating based on observed luminosity at "turnoff" transition and theoretical relation between luminosity and age
- depends on slowest reaction rate of CNO cycle:

## bottleneck <sup>14</sup>N(p, $\gamma$ )<sup>15</sup>O



#### History slightly biased

| 1949 | Woodburry, Hall, Fowler    |
|------|----------------------------|
| 1951 | Ducan, Parry               |
| 1955 | Bashkin,Carlson and Nelson |
| 1957 | Lamb and Hester            |
| 1957 | Pixley                     |
| 1957 | Hebbard and Baily          |
| 1959 | Povh and Hebbard           |

| activation<br>activation at low energy |
|----------------------------------------|
| activation at low energy               |
| Nal                                    |
| Nal                                    |

Nal



### **History**

| 1949 | Woodburry, Hall, Fowler    | activation               |
|------|----------------------------|--------------------------|
| 1951 | Ducan, Parry               | activation at low energy |
| 1955 | Bashkin,Carlson and Nelson |                          |
| 1957 | Lamb and Hester            | activation at low energy |
| 1957 | Pixley                     | Nal                      |
| 1957 | Hebbard and Baily          | Nal                      |
| 1959 | Povh and Hebbard           | Nal                      |
|      |                            |                          |



first experiments on  $14N(p,\gamma)150$  in Toronto

Schröder Publication

76 87 14N(p,g)15O programm started in Münster, Bochum and Toronto targets: evaporated, implanted and gas target

high extrapolation of gs transition (Breit Wigner)



## **History**

|      |       | 11101019                                                                         |                         |                   |
|------|-------|----------------------------------------------------------------------------------|-------------------------|-------------------|
| 1949 |       | Woodburry, Hall, Fowler                                                          | activation              |                   |
| 1951 |       | Ducan, Parry                                                                     | activation at low en    | nergy             |
| 1955 |       | Bashkin,Carlson and Nelson                                                       |                         |                   |
| 1957 |       | Lamb and Hester                                                                  | activation at low en    | hergy             |
| 1957 |       | Pixley                                                                           |                         |                   |
| 1957 |       | Hebbard and Baily                                                                |                         |                   |
| 1959 |       | Povh and Hebbard                                                                 |                         |                   |
| 1970 | 1973  | Production of thousends of N-t<br>production of 14N enriched                     | argets for 14N(α,γ)18F  |                   |
| 13   | 76    | first experiments on 14N(p,γ)15<br>in Toronto                                    | 0                       |                   |
| 76   | 87    | 14N(p,g)15O programm started<br>targets: evaporated, implanted<br>and gas target | in Münster, Bochum and  | Toronto           |
|      |       |                                                                                  | high extrapolation of g | s transition      |
|      |       | Schröder Publication                                                             | (Breit Wigner)          | 400               |
|      |       |                                                                                  |                         |                   |
|      |       | R-matrix fit of Schröder data                                                    |                         | E                 |
| 2001 |       | by Carmen Angulo                                                                 | gs greatly reduced      | 10 E              |
| 2001 |       | Tunl measurement of ANC                                                          |                         |                   |
| 0000 |       | Tunl Doppler shift                                                               |                         | arn               |
| 2002 |       | measurement                                                                      |                         |                   |
|      |       |                                                                                  |                         | tor (k            |
| 2002 |       | start of LUNA2                                                                   |                         | Li fac            |
|      |       | start of LENA                                                                    |                         | ن E/              |
| 2003 |       | Mukhamedzanov                                                                    |                         | 0.01 <sub>E</sub> |
| 2004 |       | Yamada livetime                                                                  |                         |                   |
|      |       |                                                                                  |                         | -                 |
| 2004 | today | LUNA/ LENA BOCHUM                                                                |                         | 0.001             |





## Status on grounstate transition



# State of the art for ${}^{14}N(p,\gamma){}^{15}O$

| Transition | LUNA 2004                                          | LENA 2005                                         |  |
|------------|----------------------------------------------------|---------------------------------------------------|--|
| to         | Formicola et al. Phys.Lett.B 591 (2004) 61         | R.C. Runkle et al Phys. Lett.<br>B, 94(2005)82503 |  |
|            | S(0) [keV · b]                                     |                                                   |  |
| 6.79 MeV   | $1.20 \pm 0.0$ ok within $\pm 2\%$ 1.15 $\pm 0.05$ |                                                   |  |
| 6.17 MeV   | $0.08 \pm 0.03$                                    | $0.04 \pm 0.01$                                   |  |
| others     | $0.080 \pm 0.004$                                  |                                                   |  |
| GS         | 0.25 ± 0.06                                        | 0.49 ± 0.08                                       |  |
| total      | 1.61 ± 0.0 Factor 2                                | $1.68 \pm 0.09$                                   |  |

## <sup>14</sup>N(p,γ)<sup>15</sup>O



## Total S-factor [keVb]



# S-factor for ground state transition using AZURE by Ed Simpson



## Answer to the summing problem



Clover detector set up distance to target: 9 cm

#### Ep=380keV;Q=81,5 C



Relative to Tr =>
6.79MeV state

$$\sigma_{gs} = \sigma_{6.79} \frac{Y_{gs}}{Y_{6.79}}$$

uncertainty in  $\sigma_{dc}$  from LUNA and LENA combined 3% res contribution in 6.79 MeV  $\gamma$ -peak angular distribution in primary line but independent of

- •Charge
- Stoichometry
- ωγ

## Line shape analysis



Same as absolute But ∆ fitted No effective energy needed Check on background lines

## Result



# Set up for DS measurement



**F(**τ)=1



## Gain stability test



## Doppler shift for the 6.79MeV line



# **Doppler shift result**



Lifetime measurement of the 6792 keV state in 150 important for the astrophysical S factor extrapolation in 14N(p,)150

D. Schürmann,1, \* R. Kunz,1 I. Lingner,1, † C. Rolfs,1 F. Schümann,1, ‡ F. Strieder,1, § and H.-P. Trautvetter1

Accepted in Pys Rev C

# $\Gamma_{\gamma}$ from lifetime, r-matrix and coulomb breakup



# Possible M1 component in DC

PHYSICAL REVIEW C 68, 065804 (2003)

Analyzing power measurement for the 14N(*p*, g)15O reaction at astrophysically relevant energies S. O. Nelson, 1,2 M. W. Ahmed, 1,2 B. A. Perdue, 1,2 K. Sabourov, 1,2 A. L.

Sabourov, 1, 2 A. P. Tonchev, 1, 2 R. M. Prior, 3, 2

M. Spraker, 3, 2 and H. R. Weller 1, 2

1 Department of Physics, Duke University, Durham, North Carolina 27708, USA

2Triangle Universities Nuclear Laboratory, Duke Station, Durham, North Carolina

## Remaining uncertainty



# END

- Thank you Dick for all you offered me:
- Physics
- Human relation
- Friendship
- Wisdom
- Good humor