

... for a brighter future

A U.S. Department of Energy laboratory managed by The University of Chicago

New Results on the β - delayed α – Decay of ¹⁶N

K. E. Rehm Argonne National Laboratory

Why another ¹⁶N decay experiment?

- All experiments use Si detectors
- •Still a large variation in S(E1)

Systematic Uncertainties (PRC 50, 1194(94))

TRIUMF: $S_{E1}(300)=79\pm 16$ (stat) $\pm 14(sys)$ keVb	
Energy calibration	\pm 10 keVb
β-branching ratio (1 ⁻)	\pm 6 keVb
¹⁷ N subtraction	\pm 5 keVb
Systematic differences between data sets	\pm 4 keVb
Coincidence efficiency	\pm 3 keVb
Uncertainty in Γ_{γ} (7.12 MeV)	\pm 3 keVb
Uncertainty in energy resolution	$\pm 2 \text{ keVb}$
Normalization of ${}^{12}C(\alpha,\gamma){}^{16}O$	$\pm 2 \text{ keVb}$
¹⁸ N subtraction	\pm 1 keVb
Noise events	\pm 1 keVb

Goals of new experiment:

- •Setup with different detectors (different systematic uncertainties)
- •Minimize sensitivity to the strong β -background
- •Eliminate contributions from ^{17,18}N beams
- Improve energy calibration
- •Better value for the branching ratio of the 7.116 MeV 1⁻ state

<u>Outline</u>

- Twin-ionization chamber
- ¹⁶N beam production technique
- Branching ratio experiment at Gammasphere
- Results

Advantages of gas over solid-state detectors

- Choose the thickness exactly as needed.
- •This limits β sensitivity to a minimum.
- No radiation damage
- Available with large areas
- Improved homogeneity
- No dead layer
- Smaller pulse height defects
- Provides signal of emission angle (back-to back)

The twin ionization chambers (NIMA 258, 209(1987))

Emission angle dependence of the Frisch grid signal

Energy calibration with a mixed ¹⁰B-⁶Li source $(10^{10}B(n,\alpha)^{7}Li, {}^{6}Li(n,\alpha)t)$

¹⁰B-C-⁶Li

E(anode)

Experimental setup for the study of the β -delayed α decay of ¹⁶N

Long-term stability of Ionization Chambers

What are the backgrounds ?

P=760 Torr

Sensitivity to β 's from a 10⁵/sec ²²Na source

¹⁶N beam production technique

How do we produce the ¹⁶N beam?

15N

Possible reactions for ¹⁵N + d

 \rightarrow No ¹⁷N or ¹⁸N to subtract

β -branching ratio measurement

β-branching ratio of the 1⁻ sub-threshold state

Branching ratio of the 1⁻ sub-threshold state

¹⁶N irradiated foil

non-irradiated foil

eld:elu

Energy Ratio E_{α}/E_{c}

Summary

New experiment for the ${}^{12}C(\alpha,\gamma){}^{16}O$ reaction

•Very clean ¹⁶N beam
•High efficiency detectors
•No sensitivity to β's
•Reduced systematic uncertainities

 \bullet S(E1)_{prel} = 72 \pm 13_(stat) \pm 8_(systematic) keVb

Collaborators

ANL: X. D. Tang, J. Greene, A. Hecht, D. Henderson, R. V. F. Janssens, C. L. Jiang, D. Kahn, C. Lister, E. F. Moore, M. Notani^{*}, N. Patel, R. C. Pardo, K. E. Rehm, G. Savard, J. P. Schiffer, D. Seweryniak, S. Sinha, B. Shumard, S. Zhu <u>Hebrew University</u>: M. Paul <u>Northwestern University</u>: L. Jisonna, R. E. Segel <u>Ohio University</u>: C. Brune <u>University of North Carolina</u>: A. Champagne <u>Western Michigan University</u>: A. Wuosmaa

* supp. by JINA

Without side-feeding corrections:

 $\frac{BR(6129)}{BR(7116)} = \frac{N_{\gamma}(6129)}{N_{\gamma}(7116)} \frac{N_{\gamma}(7116-1754)}{N_{\gamma}(6129-2741)} \frac{N_{\gamma}(2741)}{N_{\gamma}(1754)}$

Old β -branching ratio: 4.8 \pm 0.4 %

New ratio (preliminary) 5.3 $\pm~$ 0.1 %

Reaction induced by thermal neutrons

Energy and efficiency calibration:

Beam diameter

Choosing the optimum pressure

Energy Calibration

 $^{10}B(n,\alpha)^{7}Li$ (10µg/cm² ^{10}B on 10µg/cm² ^{12}C) E_{$\alpha 0$}=1.7891 MeV E_{$\alpha 1$}=1.4832 MeV

Pressure dependence

"Direct Measurements":

$^{12}C(\alpha,\gamma)^{16}O:$	⁴ He Beam	Stuttgart, Karlsruhe
$\alpha(^{12}C,\gamma)^{16}O$	¹² C beam	Bochum
$\alpha(^{12}C,^{16}O)\gamma$	¹² C beam	Bochum, TRIUMF

"Indirect Measurements":		
¹⁶ N β decay	¹⁶ N beam	ANL
$^{16}\mathrm{O}(\gamma,\alpha)^{12}\mathrm{C}$	FEL	TUNL
Coulomb Breakup of ¹⁶ O	¹⁶ O	KVI

Others:

$^{12}C(^{6}Li,d)^{12}C, ^{12}C(\alpha,\alpha)^{12}C$	⁶ Li	Caltech, Notre D.
¹⁷ Ne β decay	¹⁷ Ne	RIA!

Theoretical Methods:

Solar abundances	UCSC
Pulsating White Dwarfs	UT

Summary:

Still a big uncertainty for $S[^{12}C(\alpha,\gamma)^{16}O]$ (in keVb):

Compilations:	1985		240	
	1988		100 ⁺¹⁰⁰ -50	
	1999		200 ± 80	
Most recent expe	eriment:	Triumf	146 +124 -84	(¹⁶ N)
		Kunz	165 ± 50	
(α,γ)				
		Fey	162 ± 40	
(α,γ)				
		Tischh.	150 ± 30	
(α,α)				
Element abunda	nces:		170	
Pulsating white	dwarfs:		290 ± 15	

Experiment	Coincidence (Detector)	Contamination	Cut off Energy (MeV)	Statistics
Mainz 1971	Single (Si 35µ)	N/A	1.08	2x10 ⁶
Yale-UConn 1994	β+α(Si 50μ)	N/A	0.8	6x10 ⁴
TRIUMF 1994	α+ ¹² C (Si 10-15μ)	^{17,18} N	0.59	1x10 ⁶
Seattle 1995	α+ ¹² C(Si ?)	N/A	0.63	1x10 ⁵
Yale-UConn 1996	β+α(Si 50μ)	N/A	0.73	2.8X10 ⁵

•N_β/N_α~1x10⁵

•Huge β background (noise)/A high energy tail in β -ray response function/ Radiation damage/ Dead layer correction/Pulse height correction

TRIUMF 93

Yale 1993

Yale 1997

Seattle 1995

Problems in Previous Experiments*

- Thin Si detectors (10-15 μm(T), 50 μm(Y))
- Huge β background (noise)
- Radiation damage (diff. detector response)
- Pulse height defect
- Dead layer correction

Gas detector would be the best choice.

* Yale: Z. Zhao et al., PRL 70(1993)2066 [S(E1,300keV)=95±6±28 keV•b] TRIUMF: L. Buchmann et al., PRL 70(1993)726 [S(E1,300keV)=57 ±13 keV•b] R.Azuma et al., PRC 50(1994)1194 [S(E1,300keV)=82±26 keV•b]

Simulation

¹⁶N \rightarrow ¹⁶O \rightarrow ¹²C+ α first test results

Alpha background (2.5x10⁴ s)

²¹⁰Po background

Background in double β decay

We have discovered a broad peak at 5.2 MeV with its leading edge at 5.3 MeV followed by a significant continuum. A similar peak has been observed in the UCSB-LBL detector³¹ at 5.1 MeV and has been attributed to a Doppler broadened line produced by the reaction ²⁸Si(n,n γ)²⁸Si. We have been successful in reproducing our line at 5.2 MeV in a simple laboratory experiment. When soft solder is melted, the ²¹⁰Po, from the sequential decays of ²¹⁰Pb and ²¹⁰Bi, concentrates on the surface of the bead. After melting and solidifying several beads of solder, α spectra from their surfaces observed with a surface barrier detector were also found to contain this peak. The same phenomenon was observed in the UCI (University of California, Irvine) time projection chamber, and

T. Avignone et al. PRC 34,666(1986)

Measure the α spectrum

For ${}^{10}B(n,\alpha)^7Li$

 E_{α} =1.5 MeV, random θ

 $E_{Li} = 4/7 * E_{\alpha}$

random E_{α} , random θ

 $E_{Li}=4/7*E_{\alpha}$

Response of a Si detector to the ¹⁰B(n, α)⁷Li reaction

Used GAMMASPHERE

What is the β **-sensitivity?**

Energy and efficiency calibration:

free after D. Rumsfeld

Pressure dependence

Future Plan

- Increase Gas Pressure to stop 2.5 MeV alpha's
- Improve statistics TRIUMF: 1x10⁶
 Yale-Uconn: 6x10⁴, 0.27x10⁶
 ANL: 0.16x10⁶/4 days; 0.16*2*2.5(0.8x10⁶)/10 days
- R-matrix fitting

Level structure of ¹⁶O

- •Beam production
- •(Stopping of the ¹⁶N beam)
- Detector
- Energy calibration
- Backgrounds
- Preliminary results

Interference between the allowed and subthreshold 1⁻ states in the ¹⁶N β decay

J. Humblet et al., Phys. Rev. C44, 2530(1991)

Sensitivity of S(E1) to various parameters (from PRC50, 1194(1994))

Experimental difficulties in measurements of the β -delayed α decay of ¹⁶N

Previous Measurements of the \beta-delayed \alpha decay of ¹⁶N

- Mainz (1969-1974)
 Si 35 μ
- Yale (1993-1997)
 Si
 50 μ
- Seattle (1994-1995) Si ? μ
- TRIUMF (1993-1997) Si 11-16 μ

•Goal of future experiments: reduce low-energy background

•No contamination from ^{17,18}N beams

Dyer NP.233, 495(74)

Kettner et al., ZPA308,73(82)

Redder et al. NP A462,385(87)

Kremer et al., PRL 60,1475(88)

Ouelett et al. PRC54, 1982(96)

Roters et al., EPJ6, 451(99)

Kunz et al., PRL86,3244(01)

Gialanella et al. EPJ11,357(01)

Assunção et al., PRC73,055801(06)

IFK

Plaga et al., NP A465,291(87) Tischhauser et al., PRL Brune et al. (6Li,d) Schürmann et al.

Buchmann et al., PRL70, 726(93) Zao et al., PRL70 Azuma et al. PRC50,1194(94)

Ge

Nal

BGO

Alpha background (2.5x10⁴ s)

Goals:

No contamination from ^{17,18}N
Setup with detectors which are insensitive to β's
Improve energy calibration
Improve 1⁻ β branching ratio

²¹⁰Po background

Improvement in Systematic Uncertainties:

		improvement
Energy calibration	\pm 10 keVb	~1/4
β-branching ratio	\pm 6 keVb	~1/4
¹⁷ N subtraction	\pm 5 keVb	-
Systematic differences	\pm 4 keVb	
Coincidence efficiency	\pm 3 keVb	
Uncertainty in Γ_{γ} (7.12 MeV)	\pm 3 keVb	
Uncertainty in energy resolution	\pm 2 keVb	
Normalization of ${}^{12}C(\alpha,\gamma){}^{16}O$	\pm 2 keVb	
¹⁸ N subtraction	± 1 keVb	
Noise events	± 1 keVb	

Background in double β decay

We have discovered a broad peak at 5.2 MeV with its leading edge at 5.3 MeV followed by a significant continuum. A similar peak has been observed in the UCSB-LBL detector³¹ at 5.1 MeV and has been attributed to a Doppler broadened line produced by the reaction ²⁸Si(n,n γ)²⁸Si. We have been successful in reproducing our line at 5.2 MeV in a simple laboratory experiment. When soft solder is melted, the ²¹⁰Po, from the sequential decays of ²¹⁰Pb and ²¹⁰Bi, concentrates on the surface of the bead. After melting and solidifying several beads of solder, α spectra from their surfaces observed with a surface barrier detector were also found to contain this peak. The same phenomenon was observed in the UCI (University of California, Irvine) time projection chamber, and

T. Avignone et al. PRC 34,666(1986)