Nuclear Level Densities in Hauser-Feshbach Calculations

Hans Peter Loens - h.p.loens@gsi.de

GSI - Gesellschaft für Schwerionenforschung

Table of Contents

Introduction

- Hauser-Feshbach Theory
- Level Densities
- Parity Dependence in Transmission Coeff.
- Parity Dependence in the Compound

3 Some Results

- ⁴⁸Ni to ⁸¹Ni
- \circ 98 Sn to 147 Sn
- Comparison To "Experiment"

Hauser-Feshbach Theory Level Densities Parity Dependence in Transmission Coeff. Parity Dependence in the Compound

Some Nomenclature...

 \bullet general reaction shall be i(j,o)m or

 $i + j \longrightarrow m + o$

- "target" is the target nucleus \boldsymbol{i}
- ${\ensuremath{\, \circ \, }}$ "daughter" is the residual nucleus m
- "compound" is the formed compound nucleus
- a "known" state is a experimentally (nearly unambiguously) known state in a nucleus

Definition

SMOKER/MOD-SMOKER the transmission probabilities as **decay probabilities** from the compound into the daughter and the target! (principle of detailed balance)

Hauser-Feshbach Theory Level Densities Parity Dependence in Transmission Coeff. Parity Dependence in the Compound

Hauser-Feshbach Formula

From Hauser-Feshbach theory, the cross section for the reaction $i^{\mu}(j,o)m^{\nu}$ is proportional to

Hauser-Feshbach Crosse Section

$$\sigma_{jo}^{\mu\nu}(E_{ij}) \propto \sum_{J,\pi} (2J+1) \frac{T_j^{\mu}(a;b) \cdot T_o^{\nu}(a;c)}{\sum_d T_d(a)}$$

here $a = (E, J, \pi)$ depicts the compound state properties; b the same for the target; c the same for the daughter

Note...

The Hauser-Feshbach model itself includes $\pi \& J$ -dependence: the transmission coefficients should come from a many body method that is sensitive to these quantum numbers! \implies but there are no such models!

Hauser-Feshbach Theory

Level Densities Parity Dependence in Transmission Coeff. Parity Dependence in the Compound

The parity is important because SMOKER gives the same transmission coefficient for $3/2^+ \rightarrow 1^-$ and $3/2^- \rightarrow 1^+!$ But what happens if there is no 1^- at this energy?

Hans Peter Loens - h.p.loens@gsi.de Nuclear Level Densities in Hauser-Feshbach Calculations

Hauser-Feshbach Theory Level Densities Parity Dependence in Transmission Coeff. Parity Dependence in the Compound

Level Densities

The back-shifted Fermi gas level density $\rho(U)$ is a pure statistical level density. The excitation energy for its calculation is back-shifted to include pairing effects: $U = E - \delta$

BSFG level density

In this approach the J- and $\pi\text{-}\text{dependence}$ is included via multiplicative factors:

•
$$F(U,J) = \frac{2J+1}{2\sigma^2}e^{\frac{-J(J+1)}{2\sigma^2}}$$
 gives the J-dependence

2 $\Pi(U,\pi)$ this is the parity factor! In case of equal distributed parities this factor becomes 1/2.

$$\rho(U, J, \pi) = \Pi(U, \pi) \cdot F(U, J) \cdot \rho(U)$$

 $\Pi=1/2:$ both parities are qually distributed \Rightarrow rather good approximation for high energies

Hauser-Feshbach Theory Level Densities Parity Dependence in Transmission Coeff. Parity Dependence in the Compound

Parity Dependence

However, it has been known for some time that this approximation is not very good for low energies on certain nuclei!

Where does the parity dependence enter?

O Calculation of the TC:

$$T_k(a) = \sum_{i=1}^{\omega} T_k^{\nu}(a;c) + \int_{E^{\omega}}^{E-S_o} \sum_{J_o,\pi_o} T_k(a;c)\rho(c)dE_o$$

Compound Sum: within the sum over J, π in the cross section formula since the optical model does not give a J and π dependence in case of SMOKER!
⇒ therefore we have to find a description that takes the non-existence of a certain parity (and maybe certain spin J) at a given energy into account!

Hauser-Feshbach Theory Level Densities Parity Dependence in Transmission Coeff. Parity Dependence in the Compound

Parity Dependence in TC

We now need a functional form of $\Pi(E,\pi)$:

- positive parity: $\Pi(E, +) = \frac{\rho(E, +)}{\rho(E, +) + \rho(E, -)}$
- 2 negative parity: $\Pi(E,-)=\frac{\rho(E,-)}{\rho(E,+)+\rho(E,-)}$
- NOTE: $\Pi(E,\pi)$ does NOT depend on J! (cancels out)

Warning!

This is an **implicit** description of the parity projected level density! Therefore we need to obtain these $\rho(E,+)$ and $\rho(E,-)$ in another way.

Hauser-Feshbach Theory Level Densities Parity Dependence in Transmission Coeff. Parity Dependence in the Compound

Linear Dependency

The important connection between the transmission coefficients and the resonance widths is:

$$T_c(E, J, \pi) = 2\pi \frac{\langle \Gamma_c \rangle}{D_{J,\pi}} = 2\pi \rho(E, J, \pi) \langle \Gamma_c \rangle$$

this combined with

$$\sigma_{jo}^{\mu\nu}(E_{ij}) \propto \sum_{J,\pi} (2J+1) \frac{T_j^{\mu}(a;b) \cdot T_o^{\nu}(a;c)}{\sum_d T_d(a)}$$

results in a **linear** influence of ρ !

IDEA: Weighting Factors!

$$\sigma_{jo}^{\mu\nu}(E_{ij}) \propto \sum_{J,\pi} \beta(E,J,\pi) (2J+1) \frac{T_j^{\mu}(a;b) \cdot T_o^{\nu}(a;c)}{\sum_d T_d(a)}$$

Hans Peter Loens - h.p.loens@gsi.de

Nuclear Level Densities in Hauser-Feshbach Calculations

Hauser-Feshbach Theory Level Densities Parity Dependence in Transmission Coeff. Parity Dependence in the Compound

The Compound Weights

Advantage...

These compound weights β produce the relevant physcis and we can retain a simple potential model to calculate the transmission coefficients!

MOD-SMOKER Compound Weights

These β s have to be calculated similar to the Π in the level density.

$$\beta(E,\pi;J) = \frac{2 \cdot \rho(E,J,+)}{\rho(E,J,+) + \rho(E,J,-)}$$

NOTE: we still assume equally distributed J-values; only an implicit J dependence is left since $\rho(+,J_1)/\rho(-,J_1)\neq\rho(+,J_2)/\rho(-,J_2) \text{ generally}$

Hauser-Feshbach Theory Level Densities Parity Dependence in Transmission Coeff. Parity Dependence in the Compound

Influence From The CMP Weights

What happens in the compound sum? Let's assume a target nucleus with negative parity states only at a low energy:

- the neutron capture leads to a nucleus where the positive parity dominates thus s-wave capture is heavily suppressed
- also the decay transitions are suppressed since only M1 transitions (because positive parity dominates) can occur

Hauser-Feshbach Theory Level Densities Parity Dependence in Transmission Coeff. Parity Dependence in the Compound

Influence From The CMP Weights

The combination of the two effects gives the relevant physics!

Beware

The example gave reduction (enhancement of weak transitions M1, p-wave)! But enhancing is also possible, since:

If one transition type (E1,even-L) is REDUCED the counterpart transition is always ENHANCED (M1, odd-L) and vice versa!

Why?: because the total number of states is NOT changed - only the distribution over parity is changed!

- \implies correlating the both effects means, they can ...
 - compensate each other
 - enhance each other

Figure: example for the "compensation" of both effects

Figure: example for an enhancement of the total cross section due to the combination of the compound weighting and the TC parity dependence

Hilaire's Level Densities

- Hilaire et al.: recently published a paper (Nucl. Phys. A 779 [2006]) where they calculated π- and J-projected level densities for Z=8 to Z=114
- \Rightarrow MOD-SMOKER interpolates these level densities *J* and π -dependent on its internal energy grid for a specific nucleus!
- \Rightarrow That way it obtains the $\rho(E, J, +)$ and $\rho(E, J, -)!$

Renormalisation

The level densities that were used are NOT renormalised to the experimental level scheme and the neutron resonance spacings near $S_n!$

Hilaire's Level Density - Compound Weights

Beware...

There are now two ways to use this input data...

• use the interpolated level densities to calculate the $\Pi(E,\pi)$. The rest is the BSFG level density. The compound weighting factors are given by

$$\beta(E,\pi) = \frac{2 \cdot \rho(E,\pi)}{\rho(E)}$$

 $\rho(E,\pi)=\sum_J \rho(E,J,\pi)$ - NOTE: no back-shift used since LDs already contain pairing effects!

On throw away the BSFG level density and use the Hilaire LDs instead! The compound weighting factors are given by

$$\beta(E,\pi;J) = \frac{2 \cdot \rho(E,J,\pi)}{\rho(E,J)}$$
$$(E,J) = \rho(E,J,+) + \rho(E,J,-)$$

⁴⁸Ni to ⁸¹Ni
⁹⁸Sn to ¹⁴⁷Sn
Comparison To "Experiment"

Some More Nomenclature...

BSFG Notation:

- normal: calculated with Rauscher et al. (1997) BSFG LDs; mass model: FRDM; no parity!
- **Tparity:** calculated with Rauscher et al. (1997) BSFG LDs; mass model: FRDM; $\Pi(E, \pi)$ from Hilaire LDs; parity dependence only for TCs NOTE: similar approach with different method done by D. Mocelj et al.

Fullparity: Tparity + parity dependent compound weighting $\beta(E,\pi)$

In ratio plots generally the ratios $\rho({\rm Tparity})/\rho({\rm normal})$ or $\rho({\rm Fullparity})/\rho({\rm normal})$ are given!

⁴⁸Ni to ⁸¹Ni
⁹⁸Sn to ¹⁴⁷Sn
Comparison To "Experiment"

Some More Nomenclature 2

DIRECT Notation:

DIRECT-normal: Hilaire et al. (2006) LDs replace BSFG LDs; mass model: FRDM; $\rho(E, J, \pi) = \frac{\rho(E, J, +) + \rho(E, J, -)}{2}$ DIRECT-Tparity: Hilaire et al. (2006) LDs replace BSFG LDs; only parity dependence in TCs DIRECT-Fullparity: DIRECT-Tparity + parity dependent compound weighting $\beta(E, J, \pi)$

In ratio plots generally the ratios $\rho(\text{DIRECT-Tparity})/\rho(\text{DIRECT-normal})$ or $\rho(\text{DIRECT-Fullparity})/\rho(\text{DIRECT-normal})$ are given!

NOTE: all reaction rates are STELLAR reaction rates!

Ni-chain with BSFG + FRDM masses

Figure: Nickel chain from ⁴⁸Ni to ⁸¹Ni

Ni-chain DIRECT + FRDM masses

Figure: Nickel chain from ⁴⁸Ni to ⁸¹Ni

Sn-chain BSFG + FRDM masses

Figure: Tin chain from ⁹⁸Sn to ¹⁴⁷Sn

Sn-chain DIRECT + FRDM masses

Figure: Tin chain from ⁹⁸Sn to ¹⁴⁷Sn

⁴⁸Ni to ⁸¹Ni
⁹⁸Sn to ¹⁴⁷Sn
Comparison To "Experiment"

MOD-SMOKER & KADONIS

The parity effect might be a nice effect in theory, but what about experimental data? To examine that let's compare to the KADONIS dataset!

Crucial points...

- In general: semi-empirical data
- In case that there is no experimental data: KADONIS gives theoretical values only! These are (in our case) mostly based upon NON-SMOKER from Thomas Rauscher
- Comparability only for stable nuclei since KADONIS' concern is s- and p-process data!

${}^{58}Ni(n,\gamma){}^{59}Ni$

 $^{61}Ni(n,\gamma)^{62}Ni$

 $^{62}Ni(n,\gamma)^{63}Ni$

⁴⁸Ni to ⁸¹Ni
⁹⁸Sn to ¹⁴⁷Sn
Comparison To "Experiment"

Conclusions...

- for some nuclei the parity non-equidistribution has a big effect!
- there is work ahead to examine the influence of J-dependence
- the most desirable treatment would be π-dependent (and J-dependent) many-body-method, so that the parity dependence does not have to be included artificially
- concerning the J-dependence such a many-body-method is not available at the moment
- concerning the π -dependence: there has been research on π -dependent optical models
- nevertheless other uncertainties can have a bigger influence such as the mass model, the level density treatment itself or the optical model

concerning mass model: separation energies of neutron rich nuclei

⁴⁸Ni to ⁸¹Ni
⁹⁸Sn to ¹⁴⁷Sn
Comparison To "Experiment"

The End!

- Thanks for your attention -