

N STATE MICHIGAN STATE

Animation of a neutron star X-ray burst. Credit: NASA/Dana Berr.

First detection of the rp-process nucleus ⁹⁶Cd

Ana D. Becerril

National Superconducting Cyclotron Laboratory

At Michigan State University

Notre Dame, IN

Frontiers 2007

Type I X-ray bursts

MICHIGAN STATE MICHIGAN

Artist's conception of neutron star EXO 0748-676 (blue sphere). It is part of a binary star system, and its neighboring star (yellow-red sphere) supplies the fuel for the thermonuclear bursts.

(Image Credit: NASA)

Type I X-ray bursts are thermonuclear explosions on the surface of a neutron star accreting matter from a companion in a binary system.

Fuel: H and He.

Energy release: 10³⁹-10⁴⁰ergs.

Temp. range: 0.2 to 2.0 GK

Time scale: 10-100 s

Density:p ×10⁵ g/cm³

Mechanisms: 3α , α p-process and rp-process

Recent observations from X-ray satellites

+ understanding of underlying nuclear physics

 \Rightarrow constraint astrophysical models

n (0)

H. Schatz, K.E. Rehm / Nuclear Physics A 777 (2006) 601-622

AN STATE MICHICAN

rp-process studies at the NSCL: looking for ⁹⁶Cd

Primary beam: ¹²⁴Xe at 140 MeV/u. Courtesy: R. Fontus "L^J lon K500 source K1200 **S800** ⁹⁶Cd cocktail Be target 188mg/cm². sent to vault Al wedge 180 mg/cm² A1900 settings: Bρ_{1,2}=3.1675 T·m; Bρ_{3,4}=2.7965 T·m Momentum acceptance = 1%

Average beam current = 5.6 pnA

Experimental challenges in rp-process studies at NSCL

First observation of ⁶⁰Ge and ⁶⁴Se Stolz, et. al. Phys. Let. B. 627 (2005) 32.

- The existence of ⁶⁰Ge and ⁶⁴Se was demonstrated for the first time.
- Difficulties:

Lack of beam purity limited the total beam intensity to about 1/10 of what would have been available.

Total beam intensity ~ 10^3 pps , did not allow β -decay measurements.

Proper correlation of events imposes a limit on the implant rate.

Example: 96Cd

Estimated half-life = 1s

Assuming beam spot covering ~1200 pixels

Wait 5 half-

 \Rightarrow Average

We need to add a velocity filter to the A1900 configuration

AN STATE MICHIGAN

rp-process studies at the NSCL: looking for ⁹⁶Cd

Primary beam: ¹²⁴Xe at **Experimental station** 140 MeV/u. Courtesy: R. Fontus "L^J lon K500 source K1200 **S800** ⁹⁶Cd cocktail **RFFS:** Additional Be target 188mg/cm². sent to vault purification of secondary proton-rich beams Al wedge 180 mg/cm² A1900 settings: Bρ_{1,2}=3.1675 T·m; Bρ_{3,4}=2.7965 T·m

Momentum acceptance = 1 %

Average beam current = 5.6 pnA

The Solution: The Radio Frequency Fragment Separator

RFFS simulated in LISE++

MICHIGAN STATE MICHIG

Example of beam purification using RFFS. Settings on ⁹⁶Cd.

RFFS Commissioning Run Experimental Setup MICHIGAN STATE MICHIGA

HIGAN STATE

UNIVERSITYUNIVERSITYUNIVERSIT

⁹⁶Cd: Particle Identification

MICHIGAN STATE MICHIG

⁹⁶Cd: Particle Identification

Final Remarks

The proton rich N=Z=48 nucleus ⁹⁶Cd has been observed for the first time and it has a half-life longer than 95 ns. Our measurement therefore paves the way for direct studies of the decay of this nucleus, which will constitute important pieces of information for the rp-process models.

> The efficiency of this measurement was greatly improved by the additional purification of the cocktail beam provided by the RFFS.

>Three experiments that will make use of the RFFS have been approved by the NSCL PAC31:

- Beta-decay Half-life Measurement of ⁸⁴Mo
- Beta-Delayed Proton Emission of ⁶⁹Kr
- Study of the Beta-Decay of ¹⁰⁰Sn

>The measurement of production rates of nuclei far from stability with existing facilities is crucial for the prediction of rates achievable with future rare isotope acceleration facilities.

Many thanks go to:

VII N I V F

Hendrik Schatz, Daniel Bazin, Matt Amthor, Vladimir Andreev, Ben Arend, Marc Doleans, Alfredo Estrade, Renan Fontus,
Patrick Glennon, Dmitry Gorelov, Marc Hausmann, Giuseppe Lorusso, Paul Mantica, Milan Matos, Fernando Montes, Jack Ottarson, Jorge Pereira, Mauricio Portillo, Joshua Stoker, Andreas Stolz, Oleg Tarasov, John Vincent, Jim Wagner, Xiaoyu Wu, Al Zeller.

This project is funded by the NSF through grant PHY0216783 (JINA), the NSCL, and by Michigan State University.