High-precision (p,t) reactions to determine ¹⁸Ne(α,p)²¹Na reaction rates

Frontiers 2007 Notre Dame

Outline

- Motivation for ²⁴Mg(p,t)²²Mg
 - Experimental setup.
- ²²Mg nuclear structure and its astrophysical impact.
 - Conclusion.

CNO cycle and connection to r-p processes via ¹⁸Ne(α,p)²¹Na reaction

Frontiers 2007 Notre Dame

Experimental area at RCNP Osaka

Frontiers 2007 Notre Dame

Experimental conditions

Grand Raiden magnetic spectrometer momentum resolution $p/\Delta p$ 37000 momentum range 5% Three different magnetic field settings, in order to collect partly overlapping spectra up to excitation energy 13 MeV Targets: ²⁴Mg 0.815 mg/cm² {self supporting} mylar 1mg/cm² CH₂1mg/cm² Measurements: beam energy 98.7 MeV angles -0.3°, 8°, 17°

Calibration done by using new high precision ^{22}Mg γ -spectrometry data, Seweryniak *et al. (2005)*

Jπ	Seweryniak	Bateman	Caggiano	
	(p,γ)	(p,t)	(3He,6He)	
0+	g.s.	-	g.s.	
2+	1.24718(3)	-	1.2463 *	
4+	3.30821(6)	-	3.3082 *	
2+	4.4020(3)	4.3998(42)	4.4009 *	
2+	5.0354(5)	5.0370(14) *	5.033(7)	
(1+)	5.0893(8)	5.0897(17)	-	
4+	5.2931(14)	5.2957(16)	5.301(4)	
2 [.]	5.2960(4)		-	
3+	5.4524(4)	5.4543(16)	5.451(5)	
2+	5.7110(10)	5.7139(12) *	5.7139 *	

Frontiers 2007 Notre Dame

The ²²Mg spectra above the proton-emission threshold (5.5042 MeV – 8.142 MeV)

²²Mg spectra above the proton emission threshold 8.142 MeV

Andrija Matić

^{22}Mg spectra above 10.5 MeV

Region above proton-emission threshold 8.142 MeV

Jπ	present	Caggiano	Chen	Berg
	(p,t)	(³He, ⁶ He)	(¹⁶ O, ⁶ He)	(⁴He,⁰He)
(2+)	8.1803(17)	8.229(20)	8.203(23)	8.197(10)
(2+)	8.383(13)	8.394(21)	8.396(15)	8.380(10)
(3-)	8.5193(21)	8.487(36)	8.547(18)	8.512(10)
(4+)	8.572(6)	8.598(20)	-	-
(0+)	8.6575(17)	-	8.613(20)	(8.644(18))
(4+)	8.743(14)	-	-	-
(1-)	8.7845(23)	8.789(20)	8.754(15)	8.771(9)
(2+)	8.9331(29)	-	8.925(19)	8.921(9)
(1-)	9.082(7)	-	9.066(18)	(9.029(20))
(4+)	9.157(4)	-	(9.172(23))	9.154(10)
(6+)	-	-	(9.248(20))	-
(2+)	9.315(14)	-	9.329(26)	(9.378(22))
(3-)	9.492(13)	-	(9.452(21))	-
(2+)	9.546(15)	-	9.533(24)	9.542(12)
(6+)	-	-	9.638	9.640(10)
(0+)	(9.70(5))	-	9.712(21)	-
(2+)	9.7516(27)	-	-	9.746(10)
(0+)	9.861(6)	-	9.827(44)	9.853(11)
(1+)	-	-	9.924(28)	9.953(13)
(2+)	10.087(15)	-	10.078(24)	(10.128(20))
(3+)	(10.168(9))	-	10.190(29)	-
(2+)	10.2717(17)	-	10.297(25)	10.260(10)
(4+)	10.430(19)	-	10.429(16)	(10.389(20))

Error in excitation energy from 1.7 keV - 20 keV.

Region above 10.5 MeV

Jπ	present	Chen	Bradfield	Groombridge	Berg
	(p,t)	(³He,⁰He)	(¹⁸ Ne,p)	(¹⁸ Ne,p)	(⁴He,⁰He)
(3+)	-	10.570(25)	(10.580(50))	10.55(14)	-
(3-)	10.667(19)	10.660(28)	-	10.66(14)	10.627(20)
(2+)	10.768(21)	10.750(31)	-	-	10.776(20)
(4+)	10.881(15)	10.844(38)	(10.820(60))	10.86(14)	-
(8+)	-	-	10.910(50)	10.92(14)	(10.915(20))
(0+)	10.999(15)	10.980(31)	10.990(50)	11.01(14)	(11.015(20))
(6,7)	-	-	(11.050(50))	-	-
(7-)	-	11.135(40)	11.130(50)	-	(11.118(20))
(6+)	-	-	-	-	(11.231(20))
(4+)	11.317(27)	-	-	-	11.313(20)
(2+)	11.499(17)	-	-	-	-
(1-)	11.603(16)	-	-	-	11.581(20)
(0+)	11.76(3)	-	-	-	(11.742(20))
(0+)	11.937(17)	-	-	-	11.881(20)
(1-)	-	-	-	-	(12.003(20))
(3-)	12.220(30)	-	-	-	(12.169(20))
(2+)	12.474(26)	-	-	-	-
(3-)	12.665(17)	-			-
(0+)	(13.010(50))	-	-	-	-

Experimentally measured resonance strengthsGroombridge et al. (2002)Taken from previous worksJ. Görres et al. (1995)Taken from mirror nucleiGoldberg et al. (2004)

Error in excitation energy from 15 keV- 30 keV

Frontiers 2007 Notre Dame

Frontiers 2007 Notre Dame

²²Mg Summary

- 1) resolution of 13 keV FWHM.
- 2) resolved 62 of ²²Mg levels.
- 3) 12 levels were observed for the first time.
- 4) doublet at 6.2411 MeV resolved by measuring 6.2261(10) (4⁺) level.
- 5) on base of measured excitation energies of ${}^{22}Mg~$ we calculated ${}^{18}Ne(\alpha,p){}^{21}Na$ reaction rate.
- 6) ${}^{18}Ne(\alpha,p){}^{21}Na$ reaction rates are five times larger than previously calculated
- 7) it is necessary to obtain spin-parity data, and resonance strengths for more precise calculations.
- 8) Our experiment gives guidance for further experiments (energy calibration).

Collaboration

- 1. A. Matic, A.M. van den Berg, H.J. Wörtche, M.N. Harakeh
- 2. T. Adachi, Y. Fujita, Y. Shimbara
- 3. H. Fujita,
- 4. K. Fujita, K. Hatanaka, Y. Sakemi, Y. Shimizu, Y. Tameshige, A. Tamii, M. Yosoi
- 5. J. Görres, P. Leblanc, M. Wiescher, G.P.A. Berg, S. O'Brien
- 6. H. Schatz
- 7. T. Wakasa
- 1. Kernfysisch Versneller Institute, Groningen, The Netherlands,
- 2. Department of Physics, Osaka University, Osaka, Japan
- 3. WITS, University of South Africa
- 4. Research Center for Nuclear Physics, Osaka, Japan
- 5. Department of Physics, University of Notre Dame, South Bend IN, USA
- 6. Department of Physics, Michigan State University, East-Lansing MI, USA
- 7. Department of Physics, Kyushu University, Fukuoka, Japan

