The Oldest Stars in our Galaxy

or

A little tale of HE 1327-2326 & HE 1523-0901

Anna Frebel

W. J. McDonald Fellow McDonald Observatory The University of Texas at Austin

Why bother?

Metal-poor stars are "fossils" of the early Universe

We can learn about the formation of the elements and nucleosynthesis processes, and how the Universe became enriched with heavy elements

Metal-poor stars are ideal tracers of the chemical evolution of the Galaxy

They allow us to investigate how the first objects formed after the Big Bang ("closest relatives")

HE 1327-2326

Basic and stellar parameters:

- Magnitude: B = 14.016 mag
- Colour: $(B-V)_0 = 0.40$ mag
- Reddening: E(B-V) = 0.06 0.096

DSS

- *BVRIK* photometry: $T_{eff} = 6180 \pm 80K$ (on Alonso et al. 1996 scale)
- Proper motion is $\mu = 0.0733$ arcsec/yr => $M_V > 3.2$ => surface gravity: log g = 3.7 (subgiant)
- Metallicity: [Fe/H] = -5.4
- Discovery spectrum: from the Subaru telescope (7 h)
- New near-UV spectrum from ESO/VLT (21 h)

[©] B.J. Mochejska (APOD)

[Fe/H]_{1D} = -5.7 => [Fe/H]_{3D} = -5.9

JINA Frontiers

The oldest Stars

Possible Scenarios for the Origin of the Abundance Pattern

- By faint Pop III SN (mixing and fallback)
 By Pop III stellar wind yields => Pre-enrichment =:
 - 3. By several Pop III SNe

=> Pre-enrichment => Pop II star

4. Binary system with mass transfer

=> Pop III star (unlikely...)

Anna Frebel

JINA Frontiers

Meynet/Maeder/Hirschi et al.

Anna Frebel

JINA Frontiers

Tominaga/Iwamoto/ Umeda/Nomoto et al.

Tominaga et al. 2007

Anna Frebel

JINA Frontiers

Chieffi & Limongi

Heger & Woosley

JINA Frontiers

The oldest Stars

- new SN yields with Z=0
 - individual
 and
 integrated
 yields
- fits of metalpoor data

Heger & Woosley, in prep.

The observer's task:

...provide the best possible abundances so they can be accurately modeled!

(and we are trying really hard..!)

Abundance Analysis

Observers use 1D LTE plane-parallel (in most cases) model atmospheres to convert the measured equivalent widths of the absorption lines observed in the stellar spectrum into actual abundances.

Obviously, there are some limitations to 1D and to LTE...! However, 3D models are hardly available.

Carbon (G-band at 4313A)

Frebel et al. 05 estimated 1D $[C/Fe]_{LTE} = 4.3$

```
New result is 3D [C/Fe]<sub>LTE</sub> = 3.7
```


3D corrections:

Collet et al. 06 presented 3D model atmosphere of HE 1327-2326

- For CNO: 3D correction as fct. of excitation potential of the molecular lines
- We have now turned these corrections into new 3D abundances as derived from CH, OH and NH

HNA Frontiers

Nitrogen (NH 3360 A)

Nitrogen

VLT data with fit based on original '1D' linelist

Nitrogen

Frebel et al. 05 estimated 1D $[N/Fe]_{LTE} = 4.6$

New result is 3D $[N/Fe]_{LTE} = 4.1$

3D abundances

Frebel et al. 2007, ApJ submitted

HE 1327–2326 has a very different chemical signature compared with the more metal-rich stars! So does HE 0107–5240 (Christlieb et al. 2002, 2004)

This is crucial observational information for the study of the early Universe

(New) Upper Limit on Li Abundance

Anna Frebel

JINA Frontiers

The Lithium Riddle

Really low Li abundance!!

... other evolved stars display Li!

Primordial Li value:

- WMAP: log ε (Li)=2.6 (Spergel et al. 06)
- Ryan et al. value at [Fe/H]=-3.5: log ε (Li)=2.0
- Our current upper limit: log ε (Li)<0.6

Possible reasons for Li depletion:

- HE1327-2326 could be a fast rotator
- Accretion of Li-depleted material from binary companion

Radial Velocity Variations??

Anna Frebel

REVIEWS OF MODERN PHYSICS

B²FH

VOLUME 29, NUMBER 4

October, 1957

Synthesis of the Elements in Stars^{*}

E. MARGARET BURBIDGE, G. R. BURBIDGE, WILLIAM A. FOWLER, AND F. HOYLE

Kellogg Radiation Laboratory, California Institute of Technology, and Mount Wilson and Palomar Observatories, Carnegie Institution of Washington, California Institute of Technology, Pasadena, California

> "It is the stars, The stars above us, govern our conditions"; (King Lear, Act IV, Scene 3)

> > but perhaps

"The fault, dear Brutus, is not in our stars, But in ourselves,"

(Julius Caesar, Act I, Scene 2)

XI.	Variations in Chemical Composition among Stars, and Their Bearing on the Various Synthesizing	
	Processes	620
) [A. Hydrogen Burning and Helium Burning	621
	B. α Process	620
	C. Synthesis of Elements in the Iron Peak of the Abundance Curve, and the Aging Effect as It Is	
	Related to This and Other Types of Element Synthesis	626
	D. S Process	62'
	E. r Process.	629
	F. p Process.	629
	G. x Process	629
	H Nuclear Reactions and Element Synthesis in Surfaces of Stars	624

E. r Process

The outstanding piece of observational evidence that this takes place is given by the explanation of the light curves of supernovae of Type I as being due to the decay of Cf^{254} (Bu56, Ba56), together with some other isotopes produced in the *r* process. Further evidence can be obtained only by interpreting the spectra of Type I supernovae, a problem which has so far remained unsolved.

... there are old stars with r-process enhancement being discovered!

HE 1523-0901

Basic and stellar parameters:

- Magnitude: B = 12.1 mag
- Colour: $(B-V)_0 = 0.70 \text{ mag}$
- Reddening: E(B-V) = 0.02

- *BVRIJHK* photometry:
 - $T_{eff} = 4630 \pm 70 K$ (on Alonso et al. 1996 scale)
- Surface gravity: log g = 1.0 (ionisation equilibrium)
 => red giant
- Metallicity: [Fe/H] = -3.0

Anna Frebel

JINA Frontiers

•

[©] B.J. Mochejska (APOD)

r-Process Enhanced Stars

(rapid neutron-capture process)

- Responsible for the production of heavy elements
- Possible production site: SN type II
- ~5% of metal-poor stars with [Fe/H] < 2.5 (Barklem et al. 05)
 => Only ~12 stars known so far with [r/Fe] > 1.0
- Chemical "fingerprint" of previous nucleosynthesis event

 Nucleo-chronometry: w/ Th, U and stable r-process elements (e.g. Eu, Os, Ir)

Heavy neutron-capture elements in stars

	alkali metals í A																	noble gases O
Period	1 1,01 Hydrogen	alkaline earth metais II A											ill A	IV A	v A	• .VI A	VII A	2 He 4.00 Helun
Period 2	3 6.94 Litium	4 Be 9.01 Seryilium											5 8 10.81 Boron	6 C 12.01 Cator	7 N 14.01 Nitrogen	8 0 16.00 Oxygen	9 F 19.00 Ruatre	10 Ne 20.18 _{Neon}
Period 3	11 Na 22.99 Sotun	12 Mg 24.31	Г Н В	IV B	VВ	VI B	transitio VII B	n metals	VIII		1B	ШВ	13 Al 26.98 Auminum	14 Si 28.09 Silicon	15 P 30.97 Phosphorus	16 S 32.07 Sulty	17 CI 35.45 Okolne	18 Ar 39.95 Agon
Period 4	19 K 39.10 Potassium	20 Ca 40.08 Caldum	21 Sc 44.96 Standum	22 Ti 47.88 Tianium	23 V 50.94 Varadum	24 Cr 52.00 Chronium	25 Mn 54.95 Mangarasa	26 Fe 55.85	27 Co 58.93 Cotet	28 Ni 58.70 Nickel	29 Cu 63.55 Copper	30 Zn 65.39 Zno	31 Ga 69.72 Gallun	32 Ge 72.61 Germanium	33 As 74.92 Asunic	34 Se 78.96 Selenium	35 Br 79.90 Bronine	36 Kr 83.80 Kygitun
Period 5	37 Rb 85.47 Rdidun	38 • Sr 87.62 Stortium	39 ¥ 88.91 Yttiun	40 Zr 91.22 Zitosius	41 Nb 92.91 Notice	42 Mo 95.94	43 Tc (98)	44 Ru 101.07 Buterium	45 Rh 102.91 Rtodum	46 Pd 106.4 Paledum	47 Ag 107.87 Shey	48 Cd 112.41 Cedmium	49 In 114.82 indum	50 Sn 118.71 Tn	51 Sb 121.74 Antimony	52 Te 127.60 Telenum	53 126.90 ixtine	54 Xe 131.29 Xenon
Period [*] 6	55 Cs 132.91 _{Cestum}	Ba Ba 197 33 Bata	Lanthanide series (see below)	72 Hf 178.49	73 Ta 180.94 Tattakat	74 W 183.85 Tungsten	75 Re 186.21 Rhenkm	76 Os 190.23 Danie	77 Ir 192.22	78 Pt 195.08	70 Au 106.97 Gold	80 Hg 200.59 Herory	81 TI 204.38 Tailur	82 Pb 207.2 Lett	83 Bi 208.98 Banuth	84 Po (209) Pokrium	85 At (210) Astative	86 Rn (222) Raton
Period 7	87 Fr (223) Francium	88 Ra 226.03 Redun	Activide arries (see bailted)	104 Rf (261) Retherlandium	105 Db (262) _{Debnium}	106 Sg (263) Seabergise	107 Bh (262) Bebrium	108 Hs (266) _{Hessien}	109 Mt (266) Meiltarium	110 (269)	111 (272)	112 (277)		114 (281)	*	(289)		118 (293)
rare earth elements—Lanthanice La series Lathanice La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lo 196.91 140.12 140.91 144.24 (145) 150.4 151.96 157.25 158.93 162.50 164.93 167.26 168.93 173.04 174.97 Lanhaum Ceite recommon budgets Prophan Senature Europhin Gedenum Techan Oversein 155.95 168.93 155.95 16																		
		A	ctinide series	89 Ac 227.03 Admin	90 Th 232.04 Thostam	91 Pa 31.04 Polactrium	92 U 238.03 Unarium	93 Np 237.05 Neptunium	94 Pu (244) Putonium	95 Am (243) Americken	96 Cm (247) _{Outum}	97 Bk (247) Bahalum	98 Cf (251) Californium	99 Es (252) Einskilum	100 Fm (257) Femin	101 Md (258) Mendelevium	102 No (259) Noteilum	103 Lr (260) Leventricium

JINA Frontiers

Cosmo-Chronometry

Age estimates can be obtained from a comparison of an observed abundance ratio of a radioactive element (such as Th, U) to a stable r-process element (such as Eu, Os, Ir) and a theoretically derived initial production ratio.

Th/Eu: "most commonly" used chronometer

- Th is "relatively easy" measurable in r-process stars
- "famous" example: CS22892-052: 14-15Gyr; Sneden et al. 96,03

U/Th: Uranium so far only confidently measured in one star

- -- CS31082-001: U/Th: ~14Gyr (Cayrel et al. 01, Hill et al. 02);
- one known with tentative, one with detection (Hill et al. 2007, in prep.)

⇒ Ultimate goal: Use as many chronometers as possible (+ beat down any errors...)! Abundances of HE 1523-0901

Anna Frebel

JINA Frontiers

Th II Line 4019Å

Anna Frebel

The oldest Stars

JINA Frontiers

U II at 3859Å

'Best fit' synthetic spectrum

. . .

Anna Frebel

The oldest Stars JINA Frontiers

The r-Process Pattern

Precision at work

They all have the same abundance pattern, particularly in the heavy n-c elements!

Anna Frebel

JINA Frontiers

The Age of HE 1523-0901

-
0
d
-
<u> </u>
r
LT_
-

JINA Frontiers

average	13.2 Gyr		
U/Th	13.0	2.9/0.4/0.9/0.4/2.2	
U/Ir	14.1	1.9/0.3/0.3/0.8/1.6	
U/Os	12.9	1.9/0.6/1.2/0.3/1.6	
U/Eu	13.2	1.9/0.6/0.4/0.2/1.6	
Th/Ir	15.0	3.3/2.0/2.9/1.5/5.6	
Th/Os	10.7	3.3/2.8/5.6/0.0/5.6	
Th/Eu	11.5	3.3/3.4/0.6/0.6/5.6	
Ratio	Age	σ _{obs/Teff/log} g/vmicr/PR	
	Ratio Th/Eu Th/Os Th/Ir U/Eu U/Os U/Ir U/Ir U/Th average	Ratio Age Th/Eu 11.5 Th/Os 10.7 Th/Ir 15.0 U/Eu 13.2 U/Os 12.9 U/Ir 14.1 U/Th 13.0	

WMAP: 13.7 Gyr

The first time more than one chronometer could be employed in a star to measure the age!

Wavelength

Anna Frebel

JINA Frontiers

Oecaying into lead...

t=13.2 Gyr, τ (²³⁸U)=4.47, τ (²³²Th)=14.05, log ϵ (Th)=-1.20, log ϵ (U)=-2.06

²³⁸U => ²⁰⁶Pb ²³²Th => ²⁰⁸Pb ²³⁵U => ²⁰⁷Pb log $\varepsilon(Pb) = -1.231$ (from obs.) log $\varepsilon(Pb) = -1.237$ (from obs.) log $\varepsilon(Pb) = -1.125$ (theoretical)

total Pb from decay: $\log \epsilon(Pb) = -0.72$

current observed Pb upper limit: log ϵ (Pb) < -0.2

 \Rightarrow S/N of 500+ needed to attempt detection!

Lead production

Pb production channels:

known Pb abundance in HE 1523-0901 will help disentangle what the different production channels are:

- Pb production from decay of Th and U
- additional prod. channels that do not go via the actinide path

Solar r-process Pb abundance:

Pb abundance in HE 1523-0901 is already *lower* than scaled solar r-process pattern: in line with claim that s-process can produce large amounts of lead (e.g. Goriely&Siess 2001, van Eck et al. 2003)

What we all could/should do ... !

Observational:

- More telescope time for Pb abundance in HE 1523-0901
- More stars with detected U + Pb are needed to further constrain nucleosynthesis processes of the heaviest elements & contribution of Pb to the r- and s-processes
- Any fainter stars will require 30m telescopes to achieve very high S/N ratio necessary for the U + Pb detections

Theoretical:

- Best possible production ratios for Th/r and U/r are needed to refine cosmo-chronometry
- Detailed knowledge of nucleosynthesis processes that are responsible for the lighter and heavier n-c elements (w.r.t. scaled solar r-process pattern)

INA Frontiers

Conclusion

- The recently discovered star HE 1327–2326 holds the record for the most iron-poor star known ([FeI/H]_{3D} = -5.9). Several promising SN pre-enrichment scenarios reproduce the abundance pattern.
- HE 1523–0901 is a newly discovered r-process enhanced star with a U detection. For the first time, all three available chronometer pairs (Th/r, U/r, U/Th) can be measured in the star, and the age was derived to be 13.2 Gyr. The Pb is very low.
- Outlook @ UT: A new metal-poor stars observing program with the Hobby-Eberly-Telescope "The chemical compositions of our Galactic Halo" (w/ Chris Sneden, Carlos Allende Prieto and others) w/ targets from SDSS/SEGUE, HKII & bright HES samples