Recent Radioactive Beam Experiments in Nuclear Astrophysics

Barry Davids, TRIUMF JINA Frontiers Meeting 21 August 2007

Caveats

- A personal, biased view
- Restricted to radioactive beam experiments, thereby excluding important stable beam measurements
- Focussed on recent measurements (if not results)
- Ignored experiments described at this workshop

$^{26}Al(p,\gamma)^{27}Si$

- Average intensity 3.4 × 10⁹ ions/sec
- 256 hours taken:
- 201 A keV, 196 A keV,
- 225 A keV (off-resonance)
- 138 coincidence events

²⁶Al(p, γ)²⁷Si Results

- $E_R = 184 \pm 1 \text{ keV}$
- $\omega \gamma = 36 \pm 7 \ \mu eV$
- Supports paradigm of secondary contribution from novae
- Exact contribution requires knowledge of the ²⁵Al(p,γ)²⁶Si rate
- Ruiz, Parikh, José et al. Phys. Rev. Lett. 96, 252501 (2006)

The ${}^{18}F(p,\alpha){}^{15}O$ Reaction Rate

²⁵Al(p, γ)²⁶Si via ²⁷Si(p, d)²⁶Si

Experiment of McMaster group (Chen & Chen) @ NSCL

²⁵Al Elastic Scattering @ CRIB

McMaster/CNS collaboration

Half-lifes and Pn values in the r-process (Pereira, Hennrich, et al.)

High-energy Coulomb-dissociation experiments at GSI

1. Cases studied at KaoS (1996 - 2001):		
•	⁷ Be(p,γ) ⁸ B:	published [Schümann et al., PRC 73, 015806 (2006)]
•	α(d,γ) ⁶ Li:	still under analysis
		Coulomb-nuclear interference
		new theory calculations by S.Typel, re-analysis by
		M.Heil

2. Cases studied at ALADIN/LAND:

- ¹⁴ $C(n, \gamma)^{15}C$: published [Datta Pramanik et al., PLB 551, 63 (2003)]
- ${}^{26}Si(p, \gamma){}^{27}P$: performed 24-May to 05-Jun-2007
- ${}^{15}O(2p, \gamma){}^{17}Ne$ performed 05-Aug to 14-Aug-2007

Coulomb dissociation – a tool for nuclear astrophysics

CD can be a useful tool to study radiative-capture reactions via the time-reversed process:

 $b + c \rightarrow a + \gamma$ $a + Z \rightarrow b + c + Z$

Get capture cross section by detailed balance.

Advantages:

- high virtual photon flux
- \bullet large cross section at low ${\rm E_{cm}}$
- charged particle detection, kinematic focussing
- experiments with radioactive ion beams possible

Disadvantages:

- Indirect method, needs theory
- bad energy resolution
- role of multipole admixtures must be clarified
- nuclear contributions

CD is not a universal method but for selected cases important information can be obtained for nuclear astrophysics

Coulomb dissociation at Kaos

Setup used so far:

Examples:

- ⁷Be(p,γ)⁸B
- D(α,γ)⁶Li

FRS / ALADIN / LAND setup

Examples:

• ${}^{92,93,98}Mo(\gamma,n)$ photo-dissociation cross section for p-process studies and comparison to (γ,n) experiments with real photons performed simultaneously at S-DANILAC (TU Darmstadt) and ELBE (FZ Rossendorf)

• ¹⁴C(n,γ)¹⁵C

New experimental setup in cave C

Technical achievements – μ Strip Silicon Detectors

μSSD sensors characteristics

Dimensions 7.2 cm Thickness Strip pitch p-side Readout pitch p-side Num. of p-side readout strips Strip pitch n-side Readout pitch n-side Num. of n-side readout strips

Developed together with AMS group at DPNC University of Geneva

 μ SSD used in a first CD experiment in 2006: ${}^{19}Mg(\gamma,2p){}^{17}Ne$

CD Experiments

¹⁵O(2p,γ)¹⁷Ne:

Possible breakout of the CNO cycle during rp-process J.Görres, M.Wiescher, and F.-K.Thielemann, PRC 51 (1995) 392

CD measurement carried out at GSI in 2007: ¹⁷Ne(γ,2p)¹⁵O

CD Experiments

²⁶Si(p, γ)²⁷P and ²²Mg(p, γ)²³AI:

Possible bypass for production of long-lived radioactive nuclei ²²Na and ²⁶Al in hot hydrogen burning environments.

Ideal cases to be studied via CD because of low Q-value and isolated resonances.

Measurement carried out at GSI in 2007.

COMPTEL observation

ANC's measured by the Texas A & M group with radioactive beams

 $\blacksquare \ ^7\text{Be} + p \leftrightarrow {}^8\text{B}$ $[^{10}B(^{7}Be, {}^{8}B)^{9}Be]$ ⁷Be(p, γ)⁸B $[^{14}N(^{7}Be, ^{8}B)^{13}C]$ $11C + p \leftrightarrow 12N$ $[^{14}N(^{11}C,^{12}N)^{13}C]$ $^{11}C(p,\gamma)^{12}N$ $1^{12}N + p \leftrightarrow 1^{3}O$ $[^{14}N(^{12}N,^{13}O)^{13}C]$ $^{12}N(p,\gamma)^{13}O$ $= {}^{13}N + p \leftrightarrow {}^{14}O \quad [{}^{14}N({}^{13}N,{}^{14}O){}^{13}C] \; {}^{13}N(p,\gamma){}^{14}O$ $= {}^{17}F + p \leftrightarrow {}^{18}Ne \quad [{}^{14}N({}^{17}F, {}^{18}Ne){}^{13}C] \; {}^{17}F(p,\gamma){}^{18}Ne$ **{ORNL (TAMU collaborator)}** beam energies 10 - 12 A MeV

¹²N @12 MeV on $N_6C_3H_6$ – May 2006

¹²C @ 23 A MeV - 150 pnA ¹²N @12 A MeV - 10⁵ pps

data

DWBA-calc.

30

Ց _{с.м.} (deg.)

35

Elastic angular distribution:

Transfer angular distribution:

15

20

25

C² ~ 3.3 fm⁻¹

⁷Be(p,γ)⁸B Reaction: Remaining Uncertainties

- High energy solar v flux directly proportional to rate of this reaction
- Cyburt, Davids, and Jennings examined theoretical and experimental situation in 2004
- Must extrapolate measurements at accessible energies to very low, experimentally inaccessible energies
- Extrapolation is model-dependent
- Even below 400 keV, GCM cluster model of Descouvement and potential model based on ⁷Li + n scattering lengths of Davids & Typel differ by 7%

Extrapolation

The Data

Relative Energy (MeV)

Mirror Asymptotic Normalization Coefficients

- Timofeyuk, Johnson, and Mukhamedzhanov have shown that charge symmetry implies a relation between the ANC's of 1-nucleon overlap integrals in light mirror nuclei
- Charge symmetry implies relation between widths of narrow proton resonances and ANC's of analog neutron bound states

TRIUMF Experiment (2006)

- Measure ANC's of the valence neutron in ⁸Li via the elastic scattering/transfer reaction ⁷Li(⁸Li,⁷Li)⁸Li at 11 MeV
- Interference between elastic scattering and neutron transfer produces characteristic oscillations in differential cross section
- Amplitudes of maxima and minima yield ANC

Calculations by Sam Wright

Advantages of the Method

- Identical initial and final states => single vertex is involved
- Statistical precision greater (compared with distinct initial and final states)
- Single optical model potential needed
- Elastic scattering measured simultaneously
- Absolute normalization of cross section enters only as a higher-order effect in ANC determination

Experimental Setup

⁸Li beam intensities of $2-4 \times 10^7$ s⁻¹

⁸Li ANC via ⁷Li(⁸Li,⁷Li)⁸Li

TRIUMF/Simon Fraser University Collaboration (Howell)

Summary

- Direct (p,γ) and/or (p,α) reaction rate measurements with radioactive beams performed at Oak Ridge, TRIUMF
- Direct radioactive beam studies of half lives, neutron emission probabilities at NSCL
- Indirect RIB reaction studies for asymptotic normalization coefficients, excitation energies, spins, and parities at GSI, Oak Ridge, NSCL, RIKEN, Texas A & M, TRIUMF