

Electron Capture Reactions in Simmering White Dwarfs

David Chamulak August 20, 2007

Type la Supernovae

- Thermonuclear incineration of a C/O white dwarf near the Chandrasekhar limit (1.4 Solar Masses). [see Hillebrandt & Niemeyer 2000]
- Light we see is produced by the decay of ⁵⁶Ni.

[NASA/ESA, The Hubble Key Project Team, and The High-Z Supernova Search Team]

Simmering

- As matter is accreted the center of the white dwarf increases in temperature and density.
- A period of convective burning starts.
- When the star can no longer adjust to the heat being released a flame is launched.
- The flame is hot enough to burn material to nuclear statistical equilibrium.

[Gasques et al. 2007]

Why do we care about electron captures?

Lets pretend that ⁵⁶Ni and ⁵⁸Ni are the only species in nuclear statistical equilibrium. The equations for mass and charge conservation

$$\sum_{i=1}^{n} X_{i} = 1 \qquad Y_{e} = \sum_{i=1}^{n} \frac{Z_{i}}{A_{i}} X_{i}$$

imply a relation between the mass fraction of $^{56}\mathrm{Ni}$ and Y_{e}

$$X 56 = 1 - X 58 = 58Y_e - 28$$

[Timmes, Brown, Truran 2003]

What we did

- Allowed a one zone model to self-heat
- Reaction network used rates found in reaclib
- Calculated the how much ⁵⁶Ni would be produced as prescribed by Woosley et. al. 2007 and compared with observation.
- Independently confirmed by Piro & Bildsten (2007)

^{22}Ne

- Next to carbon and oxygen, neon should be the third most abundant elements in the white dwarf.
- The abundance of ²²Ne should track along with the metalicity of the main-sequence progenitor of the white dwarf.

The origin of ²²Ne

composition ^a	density 10 ⁹ g cm ⁻³	$\mathrm{d}Y_e/\mathrm{d}Y_{12}$
$X_{22} = 0.00$	1.0	0.136
	3.0	0.297
	6.0	0.302
$X_{22} = 0.06$	1.0	0.125
	3.0	0.301
	6.0	0.305
$3Z_{\odot}$	1.0	0.130
	3.0	0.349
	6.0	0.355

Table 1.	Change in electron abundance per carbon consumed during the pre-explosion
	convective burning

 $^{\rm a} {\rm In}$ all cases the mass fraction of $^{12} {\rm C}$ is 0.3.

[Chamulak et. al. 2007]

Summery and Conclusion

- A lower Ye leads to a lower abundance of ⁵⁶Ni and hence a dimmer supernova
- Simmering reduces Ye linearly with ¹²C
- The reduction in ⁵⁶Ni is not enough to account for the scatter in the observed brightnesses

