On the waiting point at A=30 in X-Ray Bursts: ${}^{30}S(\alpha,p){}^{33}Cl$ with CRIB

David (Daid) Kahl

JINA Frontiers 2007 – Notre Dame University 20 August 2007

> Department of Physics & Astronomy McMaster University Hamilton, Ontario, Canada kahldm@mcmaster.ca

- Modelling suggests ³⁰S(α,p)³³Cl is important to energy generation in <u>X-Ray Bursts</u> (XRBs)
- Reaction cross sections are the main uncertain factor in stellar reaction rates

a

• We want to measure the cross section of the inverse reaction $-\alpha({}^{30}\mathrm{S,p}){}^{33}\mathrm{Cl}$, so we need a ${}^{30}\mathrm{S}$ beam

Typical XRB (~100 Known Systems) 4U 1636-53

One of Four Multi-peaked XRBs 4U 1608-52

Penninx, W., Damen, E., van Paradijs, J, & Lewin, W. H. G. 1989, A&A, 208, 146.

One of Four Multi-peaked XRBs 4U 1608-52

Penninx, W., Damen, E., van Paradijs, J, & Lewin, W. H. G. 1989, A&A, 208, 146.

Assumed Initial Conditions

- Fisker, Thielemann & Wiescher model (2004)
 - J. Fisker, F.-K. Thielemann, and M. Wiescher, Ap. J. 608 (2004) 61
- Low mass binary systems
- Accretion material of solar composition
 - Anders & Grevesse 1989
- Atmosphere initial T = 0.1 0.2 GK
 - Burst temperature will be 1 2 GK
 - Constant accretion rate of 7.65 x 10⁻⁶ solar masses/year
 - 4.5% of the Eddington accretion rate

Uncertain Factors of XRB Model

- Models of Convection
 - Not easily testable / falsifiable
- Accretion rate & material
 - Rate may vary by 6 orders of magnitude!
- Restrictions of Spherically Symmetric Models
 - Close binary pairs are not spherical
- Nuclear cross sections with no experimental data
 - ${}^{30}S(\alpha,p)$ and ${}^{34}Ar(\alpha,p)$ reactions rates

Some XRBs are Double Peaked. Why?

- Satellite counter energy range
 - Some double-peaks may be from radius expansion
 - Drop is in bolometric luminosity for 3 systems
- Modeling of Heat Transport
 - Artificial impedance with < 20 zones
 - Spatially Localized Burning Region
 - Frequency
- Accretion Disk Scattering
 - Recurrence time, fluence, peak flux
 - Multiple Release of Nuclear Energy

rp-process Burning Path

- <u>Rapid Proton capturing on CNO seed</u>
- Burning at/near proton drip line

- <u>Rapid Proton capturing on CNO seed</u>
- Burning at/near proton drip line
- (p,γ) - (γ,p) equilibrium at $T_z \neq -1$
 - Nuclear pairing term favors even-N, even-Z

- <u>Rapid Proton capturing on CNO seed</u>
- Burning at/near proton drip line
- (p, γ)-(γ ,p) equilibrium at T_z = -1
 - Nuclear pairing term favors even-N, even-Z
- β^+ decay sets timescale of burning
 - Half-lives at $T_z = -1$ are > 1 second

- <u>Rapid Proton capturing on CNO seed</u>
- Burning at/near proton drip line
- (p, γ)-(γ ,p) equilibrium at T_z = -1
 - Nuclear pairing term favors even-N, even-Z
- β^+ decay sets timescale of burning
 - Half-lives at $T_z = -1$ are > 1 second
- (α ,p) reactions begin to compete with (p, γ) for A < 40
 - J. Fisker, F.-K. Thielemann, and M. Wiescher, Ap. J. 608 (2004) 61

Chart of the Nuclides

Region of Interest

Modified image from: J. Fisker, F.-K. Thielemann, and M. Wiescher, Ap. J. 608 (2004) 61.

Burning Pathway

Key	
Colour	Target Q _p (MeV)
White	< 0
Red	0 - 0.5
Yellow	0.5 - 2.5
Green	2.5 - 3.5
Blue	3.5 - 5.0
Purple	5.5 - 8.0
Grey	stable

Key	
Colour	Target Q _p (MeV)
White	< 0
Red	0 - 0.5
Yellow	0.5 - 2.5
Green	2.5 - 3.5
Blue	3.5 - 5.0
Purple	5.5 - 8.0
Grey	stable

- All roads lead to ³⁰S
- The roads that lead away from ³⁰S are traffic jammed or low speed limit

³⁰S is that red block

Key	
Colour	$\begin{array}{c} Target \\ Q_p \; (MeV) \end{array}$
White	< 0
Red	0 - 0.5
Yellow	0.5 - 2.5
Green	2.5 - 3.5
Blue	3.5 - 5.0
Purple	5.5 - 8.0
Grey	stable

- Clearly ${}^{30}S(\alpha,p){}^{33}Cl$ is important here
- It's omitted in the previous diagrams because the rate is not known

Key		
Colour	Target Q _p (MeV)	
White	< 0	
Red	0 - 0.5	
Yellow	0.5 - 2.5	
Green	2.5 - 3.5	
Blue	3.5 - 5.0	
Purple	5.5 - 8.0	
Grey	stable	

 $N_A \rho Y_a \Delta(T) < \sigma v >_{(a,p)}$ β+

Modified image from: J. Fisker, F.-K. Thielemann, and M. Wiescher, Ap. J. 608 (2004) 61.

${}^{30}S(\alpha,p){}^{33}Cl$ is a waiting point!

- ${}^{30}\text{S}$ t_{1/2} = 1.178 seconds
- Model reproduces double peak using best available nuclear data
- Double peak is greatly reduced if reaction rate of ³⁰S(α,p) is increased by factor of 100
- Model is consistent with a waiting point at ³⁰S
- We can experimentally test this model

Computed luminosity vs. time for three parameters; light curves have been synchronized to make second burst coincide.

Modified image from: J. Fisker, F.-K. Thielemann, and M. Wiescher, Ap. J. 608 (2004) 61.

${}^{30}S(\alpha,p){}^{33}Cl$: stars to the lab

- Gamow window / peak
 Burst T = 1 2 GK
 Inverse kinematics in lab
 1 GK, E_{cm}=1.4 2.3 MeV
 - Using ³⁰S beam, for 1 GK E_{lab} =12.0 - 19.9 MeV
- 2 GK, $E_{cm} = 2.1 3.8 \text{ MeV}$

- Using ³⁰S beam, for 2 GK E_{lab} =18.2 – 32.3 MeV

Image modifed from:

Rolfs, Claus E., Rodney, William S., Cauldrons in the Cosmos, University of Chicago Press, Chicago, 1988.

³⁴Ar Reaction Channel

- •Are there resonances?
- •Very little data
 - $Q_{\alpha,p} = 2.08 \text{ MeV}$
 - Experiment!
 - Proposed experiment could not identify levels

Image adapted from P. Endt, Nucl. Phys. A 521 (1990) 1.

CNS-RIKEN Joint Project

20 m

.0 m

RIBF

RIKEN RIBF

• Ion Source (ECR)

• Cyclotron (AVF)

Deliver beam to CRIB
 <u>CNS Radioactive Ion</u>

<u>Beam Facility</u>

S. Kubono *et al.* Eur. Phys. J. A **13** (2002) 217.

Beam Production via ³He(²⁸Si,n)³⁰S

Image modified from S. Kubono, private communication via A. A. Chen.

Scattering Chamber (F3) Detector Schematic

Image modified from original: A. A. Chen, private communication.

⁴He gas cell (Havar windows absent)

Results of ³⁰S Beam Development

- Spent 2 days developing the beam
- We looked at ${}^{30}S^{+16}$, ${}^{30}S^{+15}$, and ${}^{30}S^{+14}$
- Need 10⁵ particles per second ³⁰S
 - Otherwise we don't get good reaction statistics
- Only got 10³ pps!
- Beam energy was low
 - 11.3 MeV attained, desired 20 MeV +
- Purity was a bit low when not fully stripped
 - ${}^{30}S^{+16}$ was 50% of final beam
 - For ${}^{30}S^{+15}$ and ${}^{30}S^{+14}$, purity of only 2 13 %

Online Particle Identification

Future Plans

- Another ³⁰S beam development run in early 2008
- Higher voltage on Wien Filter will increase purity
 - 90 kV compared to 60 kV
- Thinner foils on PPACs will decrease energy loss
 - 2.5 μ m mylar compared to 5 μ m mylar
- Optimize beam energy for ²⁸Si(³He,n)³⁰S cross-section
 - Energy dependent cross section not well known
- Do experiment in spring 2008
 - Set lower limit on ³⁰S(α,p)³³Cl reaction rate if we can't measure it
 - Confirm detector efficiency with known (α,p) reaction

Collaborators

- McMaster University (Canada): A. A. Chen, J. Chen, K. Setoodehnia
- University of Tokyo (Japan): S. Kubono, H. Yamaguchi, Y. Wakabayashi, S. Hayakawa, S. Michimasa
- Ewha Womans University (Korea): A. Kim

Works Cited

- B. W. Caroll, and D. A. Ostlie, *An Introduction to Modern Astrophysics*, Second Edition, Pearson Education, New York, 2007.
- J. L. Fisker, F.-K. Thielemann, M. Wiescher, 2004, ApJ, 608, L61.
- B. E. J. Pagel, Nucleosynthesis and Chemical Evolution of Galaxies, Cabridge University Press, Cambridge, 1997.
- C. Rolfs., W. S. Rodney, Cauldrons in the Cosmos, University of Chicago Press, Chicago, 1988.
- P. Endt, Nucl. Phys. A 521 (1990) 1.
- P. Endt, Nucl. Phys. A 633 (1998) 1.
- S. Kubono et al., Eur. Phys. J. A 13 (2002) 217.
- M. Sztajno et al., ApJ 299 (1985) 487.
- J. van Paradijis *et al.*, MNRAS **221** (1986) 617.
- W. Penninx et al., A&A 208 (1989) 146.
- H. Schatz et al., Phys. Rev. Lett. 79 (1997) 3845.
- H. Schatz et al., Phys. Rep. 294 (1998) 167.
- H. Schatz *et al.*, ApJ **524** (1999) 1014.
- W. Bradfield-Smith et al., Phys. Rev. C 59 (1999) 3402.
- D. Groombridge et al., Phys. Rev. C 66 (2002) 055802.
- S. Dababneh et al., Phys. Rev. C 68 (2003) 025801.
- S. E. Woosley et al., Nucl. Ap. J. Supp. 151 (2004) 75.
- W. Bohne et al., Nucl. Phys. A 378 (1982) 525.
- M. Hagen et al., Phys. Lett. B 26 (1968) 432.
- H. Kumagai et al., Nuc. Inst. and Meth. A 470 (2001) 562.
- O. Tarasov, D. Bazin, Nucl. Phys. A 764 (2004) 411.
- · Proposal for experiment, accepted by CNS PA Committee.
- T. Rauscer and F.-K. Thielemann, At. Data Nucl. Data Tables 79 (2001) 47.
- S. Kubono, private communication (2007).
- A. A. Chen, private communication (2006, 2007).
- D. Kahl *et al*, CNS Annual Report (2007).
- Sources used for graphics are cited in their respective slides. They are also cited here if those sources were used for scientific information.

r-process path

Neutron Star Cross Section

Caroll, Bradley W., and Ostlie, Dale A., *An Introduction to Modern Astrophysics*, Second Edition, Pearson Education, New York, 2007.

- Nuclear Burning in Normal XRBs
 See Schatz et al. 1998 Phys Rep, Schatz et al. Ap J 1999
 Explosive nuclear burning of matter accreted on surface of a neutron star
 - Recurring Bursts
- Accreted material is primarily hydrogen and helium
- Rapid sequence of proton captures and beta-plus decays up to mass A ~ 140
 - CNO seed nuclei (β-limited Hot CNO cycle)
 - Single peaked
 - ~ 400 known X-ray bursting systems
 - Burst times are 10 100 seconds
 - Temperatures are 1 2 GK

Havar Foil

- Used in windowed gas targets to confine gas but allow high-energy particles to penetrate
 - Front window thin enough to allow beam through
 - Rear window thick enough to stop beam
- Iron group alloy
 - High Coulomb barrier
 - 42.50% Co, 20% Cr, 19.06 % Fe, 13% Ni, 2.8% W, 2.0% Mo, 1.6% Mg, 0.04% Be.
- Low thermal conductivity
- High tensile strength
- Expensive

2.5 μm havar

