⁴⁴Ti and ⁵⁶Ni from Type II supernova explosions

G. Magkotsios (ND), A. Hungerford (LANL), C. Fryer (LANL), P. Young (ASU), F.X. Timmes (LANL, ASU)

A JINA – LANL collaboration

Motivation

- Both are supernovae diagnostic
- $\cdot^{44}\text{Ti} \rightarrow {}^{44}\text{Sc} \rightarrow {}^{44}\text{Ca}$
 - Primary channel for ⁴⁴Ca synthesis
 - Observational constraints in Cassiopeia A
- COMPTEL for ⁴⁴Ti γ -rays, BeppoSAX PDS for ⁴⁴Sc ones • $^{56}Ni \rightarrow ^{56}Co \rightarrow ^{56}Fe$
 - ⁵⁶Fe X-ray lines observed
 - Large fraction of ⁵⁶Ni expected
 - Restrict upper/lower limits
 - Recent Chandra data (1 Ms X-ray observation)

Terminology

- Burning regimes
 - Nuclear Statistic Equilibrium (NSE)
 - Quasi Static Equilibrium (QSE)
- Hydrodynamic simulations
 - Parameterized post-shock analysis (freeze-out)

$$\frac{dT}{dt} = -\eta \frac{T}{\tau_T} \qquad \frac{d\rho}{dt} = -\eta \frac{\rho}{\tau_\rho}$$

 2D & 3D Smooth Particle Hydrodynamics (SPH) of core collapse supernovae

Contour plots for ⁴⁴Ti and ⁵⁶Ni yields

Changing peak density

Contour plots for ⁴⁴Ti and ⁵⁶Ni yields

Changing peak temperature

SPH contour plot for ⁴⁴Ti

Freeze-out vs post-processing

 \boldsymbol{X}

Yields for $Y_e = 0.498$ and $Y_e = 0.502$

Outlook

- With the parameterized shock wave approximation we may avoid the post processing in SPH models
- For "proton rich" matter, ⁴⁴Ti abundance decreases dramatically
- . More calculations to be done
 - Greater accuracy in NSE calculations
 - How much is the total mass of each isotope ?