Positron Annihilations at the Galactic Center

Hasan Yüksel The Ohio State University

Frontiers 2007, Conference on Nuclear Astrophysics August 19th - 21st @ University of Notre Dame

origin of positrons

- first gamma radiation spectral feature out of solar system

- cosmic rays produce energetic positrons
- $p p \rightarrow p n \pi^{\scriptscriptstyle +} \qquad \pi^{\scriptscriptstyle +} \rightarrow \mu^{\scriptscriptstyle +} \rightarrow e^{\scriptscriptstyle +}$
- β^+ isotopes from supernovae supply low energy positrons ⁵⁶Co, ²⁶Al, ⁴⁴Ti, ²²Na
- pair production in compact objects (BHs, pulsars) $\gamma^+ N \rightarrow N e^+ e^-$
- other more exotic mechanisms?

supernovae and ²⁶Al Line

1.809 MeV decaying Aluminium line

- traces a population of massive, young stars
- doppler shift due to differential rotation of the galaxy

- what about the distribution of positron annihilation line?

0.511 MeV annihilation line

- angular distribution: ~ 8° at FWHM (Knödlseder, 2005)

- annihilation rate: ~10⁵⁰ positrons/year

- 0.511 kev line flux: $\sim 10^{-3}$ photons cm⁻² s⁻¹

- angular distribution: $\sim 6^{\circ}$ at FWHM (Weidenspointer, 2007)

views of Milky Way

many models / studies on positrons

astrophysical scenarios

- casse, cordier, paul and schanne, hypernovae/GRB
- bertone, kusenko, palomares-ruiz, pascoli and semikoz, GRBs
- milne, kurfess, kinzer and leising, SNe and positron annihilation
- prantzos, magnetic fields guessoum jean prantzos, micro quasars
- totani, supermassive black hole Sgr A*
- wang pun cheng, pulsar winds
- beacom and yüksel, inflight annihilation constraint on positrons ...among many others ...

exotic mechanisms

- ferrer and vachaspati, superconducting cosmic strings
- frampton and kephart, primordial black holes
- picciotto and pospelov, unstable relics
- kasuya and takahashi, q balls
- kawasaki and yanagida, moduli decayamong many others ...

dark matter inspired

- boehm, hooper, silk, casse and paul, mev dark matter
- fayet, U-boson detectability, and light dark matter
- serpico and raffelt, primordial nucleosynthesis constraints on mev dm
- beacom, bell and bertone, gamma-ray constraint on mev dm
- ando and komatsu, ahn and komatsu, extragalactic mev dark matter
- oaknin and zhitnitsky, color superconducting dm, compact composite object dm
- cumberbatch silk starkman, difficulties in cco dm
- hooper and wang, axino dark matter
- pullen chary kamionkowski Wimps EGRET and positrons
- finkbeiner and weiner, XDM pospelov and ritz, ew scale WIMPS

... among many others ...

an exotic model: sccs

- tangle of superconducting strings frozen at the GC
- moving loops produce current through galactic magnetic fields
- zero modes of charged particles scatter out, once their enery exceed their rest mass
- positron flux depends on field strength and density of strings ferrer vachaspati 2005 ferrer mathur vachaspati starkman 2006

light dark matter candidate: MeVdm

- light dark matter annihilates into e+ e- pairs
- dm² distribution in halo resembles observed 511 keV morphology boehm, hooper, silk, casse, paul 2004

- proposed range is 1-100 MeV, in order to
- prevent production of particles other than e+e- pairs and energy losses are dominated by ionization (no sychrotron or breamsstrahlung)

exciting dark matter: xdm

- a WIMP candidate with an <u>excited state</u> I-2 MeV above the ground state, which may be collisionally excited and de-excites by e+e- pair emission

finkbeiner and weiner, XDM pospelov and ritz, ew scale WIMPS

dark anti-matter

dark matter in the form of antimatter
nuggets providing 511keV photons and more

oaknin and zhitnitsky, color superconducting dm, compact composite object dm

all these models need to be tested

 energy scale of injected positrons can provide important clues about the underlying production mechanism

energy loss rate of charged particles

positron enery loss rate in neutral hydrogen medium:

strong moskalenko 1998

nucleons

electrons & positrons

annihilation of non-relativistic positrons

f: fraction of positrons forming positronium before annihilation

guessoum jean gillard 2005, guessoum ramaty lingenfelter 1991

annihilation of non-relativistic positrons

for each annihilated positron, number of photons produced: 2 ($I - \frac{3}{4} f$) $\rightarrow 2\gamma$ line 3 ($\frac{3}{4} f$) $\rightarrow 3\gamma$ continuum

- line/continuum flux ratio suggests f ~ l

jean et al 2005

inflight annihilations

- "up to 20% of ultra-relativistic positrons may annihilate inflight"

heitler, quantum theory of radiation (1954)

- 1.4 % (5.5 %, 11 %) of positrons injected at 1 (3, 10) MeV may be annihilated in flight until they become non-relativistic

survival of positrons

- annihilation cross section calculated by Dirac, 1930

$$\sigma = \frac{\pi r_e^2}{\gamma + 1} \left[\frac{\gamma^2 + 4\gamma + 1}{\gamma^2 - 1} \ln(\gamma + \sqrt{\gamma^2 - 1}) - \frac{\gamma + 3}{\sqrt{\gamma^2 - 1}} \right]$$

- fraction annihilated when positrons travel by "dx"

Р

$$\frac{dN(E)}{N(E)} = n_{\rm H}\sigma(E)dx = n_{\rm H}\sigma(E)\frac{dE}{|dE/dx|}$$
$$_{E_0 \to E} = \frac{N(E)}{N(E_0)} = \exp\left[-n_{\rm H}\int_{E}^{E_0}\sigma(E')\frac{dE'}{|dE'/dx|}\right]$$

- P: terminal survival probability (positrons lost all their energy)

$$\frac{\Phi_{\text{IA}}}{\Phi_{0.511}} = \frac{2(1-P)}{2(1-3f/4)P} = \frac{1}{1-3f/4} \frac{1-P}{P}$$

inflight annihilation photons

$$\frac{d\sigma}{dk} = \frac{\pi r_{\rm e}^2}{\gamma^2 \beta^2} \left(\frac{-(3+\gamma)/(1+\gamma) + (3+\gamma)/k - 1/k^2}{[1-k/(1+\gamma)]^2} - 2 \right)$$

- the differential cross section is peaked at the endpoints

- as injected positrons lose energy, the low-energy peak remains below 0.511 MeV

- while the high-energy peak moves down slowly, producing a long tail

> stecker 1969, svensson 1982, aharonian atoyan sunyaev 1982

inflight annihilation spectrum

power law fit to measured diffuse

- in the disk, diffuse flux can be approximated as:

$$\frac{d\Phi}{dE} = 0.013 \left(\frac{E}{\text{MeV}}\right)^{-1.8} \text{ cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1} \text{ MeV}^{-1}$$

- agrees with diffuse flux below I MeV from INTEGRAL strong et al 2005

constraints on positron injection energy

- compare diffuse flux to excess from inflight annihilations at the GC

if positrons injected with energies over 3 MeV, the radiation from inflight annihilations would significantly exceed the diffuse gamma-ray flux observations

summary

