

<u>The r-Process in the High-</u> Entropy Wind of Type II SNe

K. Farouqi

Department of Astrophysics and Astronomy University of Chicago

Core collapse Supernova

- Core of massive star collapses to from a hot proto-neutron star (black).
- This cools by v emission.
- Intense v flux creates low density hot bubble region behind shock.
- This may have relatively high entropy S but is it very neutron rich?
- r-process depends on S, expansion time scale t, and electron fraction Y_e.

For a given blob of matter behind the shock front above the protoneutron star :

define three parameters:

- Electron abundance: Y_e=Y_p=1-Y_n (p/n-ratio) For example: Ye=0.45 -> 55% neutrons & 45% protons
- Radiation entropy: S_{rad} ~ T³/ρ
- Expansion speed V_{exp} wich determines the process durations τ_{α} and τ_{rp} :

$$\tau_{\rm exp} = \frac{R_0}{V_{\rm exp}} (\frac{T_i}{T_f} - 1)$$

<u>Example</u>: V_{exp} = 7500 km/s, R_0 = 130 km $\rightarrow \tau_{\alpha}$ = 35, τ_{rp} = 450 ms

$$S = 1.21 \frac{T_9^3}{\rho_5} [1 + \frac{7}{4} f(T_9)], where$$

$$0 < f(T_9) = \frac{T_9^2}{T_9^2 + 5.3} < 1 \Leftrightarrow 1.21 \frac{T_9^3}{\rho_5} < S < 3.33 \frac{T_9^3}{\rho_5},$$

$$T(t) = T_0 (\frac{R_0}{R_0 + V_{exp}t}), \rho_5(t) = 1.21 \frac{T_9^3}{S} [1 + \frac{7}{4} f(T_9)]$$

Time dependence of the density and temperature

The α -process $3 < T_{\alpha} < 6$

All nuclear reactions via strong and electro-magnetic interactions are very fast when compared with dynamical timescales.

At T₉ ~6, α -particles become the dominant constituent of the hot bubble!

Recombination of the α -particles is possible via:

NSE:

- 1. $3\alpha \rightarrow {}^{12}C$ and 2. $\alpha + \alpha + n \rightarrow {}^{9}Be$, followed by ${}^{9}Be(\alpha, n) {}^{12}C$
- Charged-particle freeze-out at T₉ ~ 3 with:
 - Dominant part of α -particles ~ 80%
 - Some heavy nuclei beyond iron (80 <A< 110)
 - Probably a little bit of free neutrons
 - \subseteq Seed composition for a subsequent r-process.

 α -particle separation energies

Proton separation energies

Seed nuclei after an *a*-rich freezeout

<u>S=200, V_{exp}=7500 km/s</u>

V	Instan	Uäuferkeit in 07	37	T .	II. 0 1 1 1 0d
I e	Isotop	naungkeit in %	Y_e	Isotop	Häufigkeit in %
0.49	⁹⁰ Kr	12.3	0.45	94 Kr	17.2
	⁹² Kr	10.8		100 Sr	12.4
	86 Se	8.3		⁹⁶ Kr	9.8
	^{82}Ge	7.2		⁸⁸ Se	8.2
	⁹¹ Kr	7.1		⁸² Ge	5.6
	93 Rb	6.7		⁸⁰ Zn	5.2
	^{98}Sr	5.9		⁹⁵ Rb	4.2
	⁸⁹ Br	5.1		⁸⁷ Se	3.9
	⁸⁰ Zn	4.2		^{102}Sr	3.8
	⁸⁷ Se	3.2		⁹² Kr	2.9
	⁹⁶ Sr	3		⁸⁶ Se	2
	⁷⁴ Ni	2.6		⁷⁶ Ni	2
	⁶⁸ Fe	2.6		⁹³ Rb	1.7
	⁹⁴ Kr	2.4		¹⁰³ Y	1.5
	100 Sr	2.3		⁶⁸ Fe	1.3
	⁷⁹ Zn	1.5		$^{91}\mathrm{Br}$	1.3
	88 Se	1.3		⁷⁸ Ni	1.3
	⁸³ As	1.1		95 Kr	1.2
	94 Sr	1		⁹⁸ Sr	1.1

Parameter combinations allowing a subsequent r-process

(1<Yn/Yseed<150)

and the second se					500	
V_{exp} (km/s)	Ye	$S (K_B/Baryon)$			800 -	-
					700	*+ ++++
					600 -	- + +++++++++++++++++++++++++++++++++++
4500	0.49	$155 \le S \le 375$			pəsz/	- + + + + + + + + + + + + + + + + + + +
	0.45	$105 \leq S \leq 340$			H 400 -	- + .,+
	0.41	$60 \le S \le 305$			200 -	
7500	0.49	$130 \le S \le 310$			100 -	- Ye=0.39 + + + + + + + + + + + + + + + + + + +
	0.45	$90 \le S \le 290$			0	
	0.41	$50 \le S \le 260$		55	- 1	35
9000	0.49	$125 \le S \le 300$		50 -		- 30 -
	0.45	$85 \le S \le 270$		45 -		25 -
	0.41	$50 \le S \le 245$		40 - peee		- z ²⁰ -
12000	0.49	$115 \le S \le 265$		35 - 37/44		15
	0.45	$80 \le S \le 245$		30	1	10 -
			1	25 -		
	0.41	$45 \le S \le 225$		20 -	/	5 -

15

4000 6000 8000 10000 12000 14000 16000

Vexp (Km/s)

0.38 0.4 0.42

0.44

Ye

0.46

0.48

0.5

400

r-Process strength formula

$$\frac{Y_n}{Y_{Seed}} = k_{SN} V_{Exp} \left(\frac{S}{Y_e}\right)^3,$$

$$k_{SN} \approx 8 \cdot 10^{-11} \left(\frac{km}{Baryon}\right)^{-1} \left(\frac{k_B}{Baryon}\right)$$

Synthesizing the A=130 peak

Ye	Entropy S	r-process duration τ [ms]	n _n [cm ⁻³] at freeze out	T ₉ [10 ⁹ K] at freeze out
0.49	230	234	1.9 x10 ²⁰	0.53
0.45	190	146	8.1 x10 ²¹	0.79
0.41	160	109	9.0 x10 ²¹	0.77
		rontiers 2007		15

Synthesizing the A=195 peak

Z	$1\!\le S\!\le 50$	$50{\leq}~{\rm S}{\leq}~110$	$110{\leq}~{\rm S}{\leq}~150$	$150{\le}~{\rm S}{\le}200$	$200 \le \mathrm{S} \le 250$	$250 \le \mathrm{S} \le 300$
26	100.00	0.00	0.00	0.00	0.00	0.00
27	99.99	0.01	0.00	0.00	0.00	0.00
28	99.98	0.02	0.00	0.00	0.00	0.00
29	99.95	0.05	0.00	0.00	0.00	0.00
-30	99.24	0.50	0.26	0.00	0.00	0.00
31	85.77	2.80	10.11	1.32	0.00	0.00
32	85.84	4.57	8.45	1.14	0.00	0.00
-33	44.49	4.84	44.37	6.30	0.00	0.00
34	22.54	17.87	21.95	35.12	2.52	0.00
35	28.19	6.32	19.91	41.75	3.83	0.00
36	23.14	72.67	2.96	1.13	0.10	0.00
37	47.56	42.41	7.31	2.58	0.13	0.00
-38	79.91	18.35	1.44	0.29	0.01	0.00
-39	61.37	37.44	0.88	0.29	0.02	0.00
40	14.25	80.74	4.69	0.31	0.02	0.00
41	0.08	94.15	4.51	1.22	0.03	0.00
42	0.03	63.70	31.67	4.53	0.07	0.00
44	0.00	27.34	61.49	11.09	0.09	0.00
45	0.00	67.09	26.71	5.96	0.24	0.00
46	0.00	11.61	66.84	21.34	0.21	0.00
47	0.00	3.66	71.38	24.74	0.22	0.00
48	0.00	3.51	54.31	41.73	0.46	0.00
-49	0.00	2.09	48.29	49.06	0.56	0.00
50	0.00	0.33	35.96	63.14	0.57	0.00
51	0.00	0.05	32.83	66.45	0.67	0.00
52	0.00	0.01	9.10	78.54	5.46	6.89
-53	0.00	0.00	11.15	83.30	1.67	3.88

The role of β -delayed neutrons in the r-process at A=130 and 195

blue: β-delayed neutrons emitted and re-captured

Summary

• The waiting-point approximation" seems to hold for expansion velocities slower than 4500 km/s. However at higher velocities like 7500 km/s the mass region beyond A=140 only the peak regions are stil in chemical equilibrium.

 The hydrodynamical simualtions of type II SNe predict entropies up to 80 and Ye-values between 0.52 and 0.49! Under those conditions it is impossible to make an r-process. However, wind termination shock (Munich group) could lead to a sudden increase of the entropy up to 280 kb/baryon!