# A Recoil Separator at Notre Dame for radiative capture studies



Manoël Couder University of Notre Dame Joint Institute for Nuclear Astrophysics

## Direct radiative capture measurements



- Suffer from:
  - Very low cross section  $\rightarrow$  Need high efficiency
  - Beam induced and room background  $\rightarrow$  Need clear signature
- Direct kinematics
  - Signature is the  $\gamma$ 's
  - Efficiency depend on the detectors (small compared to charge particles detectors)

## →Inverse kinematics



Rejection required for 100  $\mu$ A > 10<sup>12</sup> assuming 1k in the detector.

Drawings from D. Schürmann

Manoël Couder

Frontier 2007 March 19, 2007

#### The Notre Dame recoil separator: Design parameters

Stable beam from the KN (4MV) Van de Graaff accelerator

Beam intensity up to 100  $\mu\text{A}$ 

Beam mass up to ~40

| -                                      |                         |          |                        |
|----------------------------------------|-------------------------|----------|------------------------|
| Reaction                               | E <sub>beam</sub> (MeV) | ∆E/E (%) | $\Delta \theta$ (mrad) |
| <sup>18</sup> Ο(α,γ) <sup>22</sup> Ne  | 2. MeV                  | 7.4%     | 40 mrad                |
| <sup>22</sup> Ne(α,γ) <sup>26</sup> Mg | 3. MeV                  | 6.5 %    | 32 mrad                |
| <sup>36</sup> Ar(α,γ) <sup>40</sup> Ca | 2.7 MeV                 | 3.5 %    | 17 mrad                |

Minimum counting rate 1 per hour

Frontier 2007 March 19, 2007

Acceptance



## Charge selection

- Multiple charge state after gas target
  - Mass selection device are charge state dependent
  - Selection of the most abundant one (~40%)
  - Clean rejection of the other beam charge state
  - $\Delta Q/Q_0 \text{ can be large} → \\Selection in two step$



#### Mass separation: Wien filter fringe fields - longitudinal

Typical Wien filter fringe field



Z (mm)

#### Mass separation: Wien filter fringe fields - longitudinal

Modified Wien filter fringe field





# Wien filter







3D calculation to validate 2D result and decide on the end shape Simion + Geant4



## Aberrations correction



Calculation up to 4<sup>th</sup> order Corrections up to 3<sup>rd</sup> order embedded in the magnetic dipoles pole faces.



# Status and perspective

- Elements orde
  First shipment
- Scattering/bac
  Slits position c
- Detector and g
- Charge state d study
- Commissioning

rget

2008



Jerry Hinnefeld

Indiana University South Bend

