Two key reactions in AGB stars:

¹⁸F(α ,p)²¹Ne and ²⁶Al(p, γ)²⁷Si

In collaboration with Karakas, Lee, Wiescher & Goerres van Raai, Lugaro, Karakas, & Iliadis, A&A, submitted

Maria Lugaro, Mark van Raai (University of Utrecht, NL) Amanda Karakas (Mt Stromlo Observatory, Australia) Christian Iliadis (University of North Carolina) Michael Wiescher, Joachim Goerres and HyeYoung Lee (JINA) ²⁶AI is produced in AGB stars via ²⁶Mg(p,γ)²⁶AI and destroyed via ²⁶AI(p,γ)²⁷Si and neutron captures and is incorporated in stardust SiC grains. We check the effect of rate uncertainties on the interpretation of the SiC data.

We run a 3 M_{\odot} , Z_{\odot} model with all nine combinations of lower limit (LL), recommended (RC), and upper limit (UL) of the rates.

C/O

Models of different masses and metallicities show the same results, and the spread in the SiC data is not covered in any case. We propose two scenarios:

Decay of ²⁶Al before incorporati on in the grains A constrains timescale of grain formation up to 2 Myr after ejection.

Stronger conclusions on the interpretation of the AI composition of AGB SiC stardust will be possible after more information is available from nuclear experiments on the ${}^{26}AI(p,\gamma){}^{27}Si$ reaction.

Of which element Dr. Kabuto builds the indestructible Mazinga Z?

- 1. Palladium
- 2. Japanium 🗊
- 3. Kryptonite

Dr Kabuto recently discovered this new element nearby the vulcano Fujiama.

Of which nationality is the evil Dr Hell, who steals the secrets of the ancient civilization of Micene to build sophisticated mechanical mosters? 1. German 🗊 2. USA

3. Italian

¹⁸F(α,p)²¹Ne

¹⁹F in AGB stars

Results from a $3 M_{\odot}, Z_{\odot}$ model: the UL produces 50% more fluorine from AGB stars!

²¹Ne in AGB stars

More evidence for a higher ${}^{18}F(\alpha, p){}^{21}Ne$ come from ${}^{21}Ne$ in stardust SiC grains from AGB stars.

In fact, he is King Vega, who plans to conquer the whole Galaxy!

Goldrake must fight against these two bad guys who want to conquer the Earth. From which star do they come from?

- 1. Sirus
- 2. Betelgeuse

3. Vega 🇊

Production of fluorine in AGB We need ¹⁸O and *p* at the same time: $^{13}C(\alpha, n)^{16}C$ 15% No uncertainties based on NACRE rates, but currently under revision with the THM $^{14}N(n,p)^{14}C$ $^{15}N(p,\alpha)^{12}C$ 23% In the ¹³C pocket: $14C(\alpha,\gamma)^{18}$ $^{18}O(\rho,\alpha)^{15}N$ ¹⁸F(β⁺, ν)¹⁸O In the pulse: ${}^{14}N(\alpha,\gamma){}^{18}F <$ ¹⁸O(α, γ)²²Ne $(^{18}F(\alpha, p)^{21}Ne 44\%)$ $^{15}N(\alpha, \gamma)^{19}F$ New evaluation by Lee, $^{19}F(\alpha, p)^{22}Ne$ Wiescher, et al. 2007: $UL = 1000 \times RC$ $(^{19}F(n,\gamma)^{20}F)$ new n_TOF rate +2%/

²⁶Al(p,γ)²⁷Si

 ²⁶Al is radioactive, with half life 0.7 Myr, ²⁶Al is produced in AGB stars, WR stars, novae and and in Sne, ²⁶Al is observed live in the Galaxy, live at the time of the Early Solar System, and live at the time of formation in meteoritic stardust grains. We focus on ²⁶Al production in low-mass AGB stars, the effect of the ${}^{26}AI(p,\gamma){}^{27}Si$ uncertainties and comparison to stardust SiC grains.

van Raai, Lugaro, Karakas, & Iliadis, A&A, submitted

²⁶Al production in low-mass AGB stars, the effect of the ²⁶Al(p,γ)²⁷Si uncertainties, and comparison to stardust SiC grains. van Raai, Lugaro, Karakas, & Iliadis, A&A, submitted

