The Impact of the Equation of State in Core-Collapse Supernovae

Mark Baird

U. Tennessee

Collaborators: E.J.Lentz, W.R. Hix, M. Liebendoerfer, O.E.B. Messer, A. Mezzacappa, TeraScale Supernova Initiative Team

Delineating EoS Effects

- Spherically symmetric collapse, bounce and shock stall simulations.
- Tool: AGILE-BOLTZTRAN (Mezzacappa & Bruenn 1993 a b c, Messer 2001, Liebendörfer et al. 2001
 - Has fully implicit, multi-group, 4-flavor Boltzmann neutrino transport
 - Most modern neutrino physics included
 - GR simulations use new LMSH electron capture rates (Hix et al. 2004, Langanke et al. 2003) as well as Bruenn 85 electron capture rates (Bruenn S W 1985 ApJS 58 771–841)
 - AGILE implicit spherically symmetric hydrodynamics with an adaptive mesh.
 - Both general relativistic
 (including gravitational redshift) and Newtonian gravity.
 - Modular architecture allows
 use of multiple realistic equations of state.
 - 15 Solar Mass Progenitor

Equations of State

- J. Lattimer and F. D. Swesty 1991, Nucl. Phys. A535, 331. (Lattimer-Swesty Routine, L-S)
- H.Shen, H.Toki, K.Oyamatsu, K.Sumiyoshi 1998 NuPhA 637, 435. (STOS.)
- Richard L. Bowers and James R. Wilson 1982 ApJ. 50, 115 (Wilson)

General Relativistic Shock Trajectory with Bruenn 85 Electron Capture Rates

•"Bumpiness" due to the shock traveling out through successive zones

Wilson EoS Shock ~10 km further than L-S EoS
STOS EoS Shock begins to in fall after ~60 ms

General Relativistic Shock Trajectory with LMSH Electron Capture Rates

- •Contrasts Bruenn 85 Electron Capture Rates
- •Wilson EoS Shock ~20 km further out than L-S EoS
- •STOS EoS Shock begins to in fall after ~55 ms

At Bounce

STOS and Lattimer-Swesty EoS

- ~ .03 M_{\odot} inner core difference, 0.0134 Y_{e} difference between L-S and STOS with LMSH rates
- ~ .04 M_{\odot} inner core difference, 0.0128 Y_{e} difference between L-S and STOS with Bruenn 85 rates
- The EOS determination of the composition ties it to the neutrino interaction processes for changes in Y_e

At Bounce

Wilson and Lattimer-Swesty EoS

- Static Ye for L-S increasing Ye for Wilson EoS, requires a closer look
- ~ .10 M_{\odot} inner core difference, .0515 Y_e difference between L-S and Wilson with LMSH electron capture rates
- ~ .05 M_{\odot} inner core difference, .0218 Y_e difference between L-S and Wilson with Bruenn 85 electron capture rates

A Closer look at the Lattimer-Swesty/Wilson EoS Comparison

- Ye decreases rapidly in the central core. Pions!
- Higher Bounce density.
- Other Thermodynamic differences: Entropy, Pressure and Chemical Potential

Discussion and the Future

- AGILE BOLTZTRAN provides a unique laboratory to perform these EoS comparisons
- The difference in shock formation radius seen between L-S and STOS comparable to that seen moving from Bruenn (1985) electron capture physics to modern LMP hybrid rates
- The Future:
 - A look at Instabilities
 - Survey other EoS's
 - Baron, Cooperstein and Kahana
 - ORNL/Oxford Hartree-Fock
 - Your EoS here, Have tester, will travel