Frontiers 2007, Aug. 19th-21st, University of Notre Dame

Astrophysically important ²⁶Si states studied with the (*d*,*t*) reaction

M. Notani^{*}, H. Y. Lee, K. E. Rehm, H. Schatz, J. O. Fernández Niello,
J. P. Greene, D. Henderson, R. V. F. Janssens, C.-L. Jiang, L. J. Jisonna,
R. C. Pardo, N. Patel, M. Paul, R. E. Segel, X. D. Tang, and A. Wuosmaa
(ANL, MSU, Tandar, NW, CSM, ND, WM * supp. by JINA)

- 1. Motivation
- 2. Previous experiments
- 3. Setup for ²⁶Si measurement
- 4. Pre-experiment with ${}^{28}\text{Si}(d,t){}^{27}\text{Si}$ reaction
- 5. Preliminary result of ${}^{27}\text{Si}(d,t){}^{26}\text{Si}$ measurement

Motivation

- ²⁶Al found as the first radioactive isotope seen in extrasolar γ -ray astronomy, by observation of ²⁶Al^{g.s.} γ decay $(T_{1/2} = 7.2 \times 10^5 \text{ yr}).$
- Reaction chain: ${}^{24}Mg(p, \gamma) {}^{25}Al(\beta + v_e) {}^{25}Mg(p, \gamma) {}^{26}Alg.s.$
- Other possible route: ${}^{25}\text{Al}(p, \gamma) {}^{26}\text{Si}(\beta^+ v_e) {}^{26}\text{Al}^*(\beta^+ v_e)$ ${}^{26}\text{Mg}^{\text{g.s.}}$
- Level structure of ²⁶Si for the astrophysical reaction rate of ²⁵Al $(p,\gamma)^{26}$ Si.
- Assignment of the spin-parity of two states in ²⁶Si to be analogous to the 1⁺ state at 5.690 MeV and 3⁺ state at 6.125 MeV in ²⁶Mg (proton threshold = 5.518 MeV).
- First measurement of the ${}^{27}\text{Si}(d, t){}^{26}\text{Si}$ reaction with a new technique.

Previous measurements of the energy level structure of ²⁶Si

Previous works

- Yale 2002 Caggiano ²⁹Si(³He,⁶He)²⁶Si $5526(4^+), 5678(1^+), 5945(3^+)$ 2005 Parikh ${}^{28}\text{Si}(p,t){}^{26}\text{Si}$
- ORNL 2002 Bardayan ${}^{28}Si(p,t){}^{26}Si$ 2006 Bardayan ${}^{28}Si(p,t){}^{26}Si$ (II)

 $5517(4^+), 5672(1^+), 5915(0^+)$

5515(4+), 5916 (0+)

 $5914(3^+ \text{ or } 2^+)$

- 2006 Kwon (NIC IX) ²⁸Si(⁴He,⁶He)²⁶Si 5508, 5918 CNS
- Ohio 2004 Parpottas ${}^{24}Mg({}^{3}He,n){}^{26}Si 5515(4^+), 5670(1^+), 5912(3^+), 5946(0^+)$
- MSU H.Schatz, A. Chen
- 2006 Seweryniak (Gammasphare) 5517(4+), 5677(1+) ANL

This work

 $^{27}{\rm Si}(d,t)^{26}{\rm Si}$

Radioactive Beam Production

DWBA Calculation

Cross section for ²⁶Si calculated by DWBA code (PTOLEMY) using the optical potential parameters from the analog states of ²⁶Mg

Analysis of Data

Result of Exp (I)

²⁸Si(*d*,*t*)²⁷Si reaction

- PI Gate $({}^{27}Si^{14+})$
- Coincidence Gate between triton and Si

DSSD Triton spectrum with the PI and Coincidence Gates

Result of Exp (I)

²⁸Si(*d*,*t*)²⁷Si reaction

■ Compare the angular distribution for 5/2⁺ g.s.

Ref. C. A. Whitten *et al.*, PRC1, p.1455 (1970) E(d) = 21 MeV

Our new system works for the spin-parity assignment!

Result of Exp (II)

- Experiment with RI beam
- PI Gate (²⁶Si¹⁴⁺)
- Coincidence Gate between triton and Si <u>looks unclear</u>
- Second DSSD burnt out
- DSSDs spectrum with the Gates

²⁷Si(d,t)²⁶Si reaction

Summary

- Confirmed the functionality of our new system for the spin-parity assignment with ²⁸Si(*d*,*t*)²⁷Si reaction, by measuring the angular distribution of the known states such as 5/2⁺ g.s. in ²⁷Si.
- Data analysis of the ${}^{27}Si(d,t){}^{26}Si$ reaction in progress.

Future Plans

- The angular distribution of tritons will determine the spin-parity assignment of 5.678- and 5.945-MeV states in ²⁶Si.
- To calculate the reaction rate of ${}^{25}Al(p, \gamma) {}^{26}Si$ using our result to improve nucleosynthesis models.
- To apply the new technique to measure a series of astrophysically important reactions involving ²²Mg, ³⁰S, and ³⁴Ar.