Searches for the Most Metal-Poor Stars with SDSS/SEGUE

INAF

$\frac{\text { MICHIGAN STATE }}{\text { UNIVERSITY }}$
Timothy C. Beers
Department of Physics \& Astronomy
Michigan State University
\& JINA: Joint Institute for Nuclear
Astrophysics

SDSS

Direct Collaborators

- Daniela Carollo (INAF, Italy /JINA)
- Young Sun Lee (MSU / JINA)
- Sivarani Thirupathi (MSU / JINA)
- Brian Marsteller (MSU / JINA)
- John Norris (ANU / SEGUE)
- Masashi Chiba (Tohuku University, Japan)
- Carlos Allende Prieto (Univ. of Texas)
- Constance Rockosi (UCSC)
- Brian Yanny (FNAL)
- Heidi Newberg (RPI)
- Jeffrey Munn (USNO)

Why the Fascination with Large Numbers of MP Stars ?

- Extremely MP stars have recorded the heavy element abundances produced in the first generations of stars
- The shape of the low-metallicity tail of the Metallicity Distribution Function (MDF) will (eventually) show structure that reveals the characteristic abundances of major epochs of star formation in early Galaxy
- Change in the nature of the MDF as a function of distance may reveal the assembly history of the MW
- Determination of the frequency of various elemental abundance signatures, e.g., enhancement of [C/Fe], [alpha/Fe], etc.
- Identification of relatively rare objects amongst MP stars, e.g., r-process / s-process enhanced stars

Previous Efforts to Find Metal-Poor Stars in the Galaxy

- Concentrated on
- High proper-motion stars (e.g., Carney et al., Ryan \& Norris)
- In-situ prism surveys (e.g., HK survey, HES)
- In total, such surveys have identified
- ~ several thousand stars with $[\mathrm{Fe} / \mathrm{H}]<-2.0$
- ~ several hundred stars with $[\mathrm{Fe} / \mathrm{H}]<-3.0$
- Inspired numerous several large-scale high-resolution spectroscopic follow-up efforts
- Cayrel et al. (2004) "First Stars" (VLT/UVES) (~100 stars)
- Christlieb et al. (2004) "HERES Survey" (VLT/UVES) (~350 stars)
- Cohen et al (2002) "OZ Survey" (Keck/HIRES) (~100 stars)
- Aoki et al. (in prog) "UMP Star Survey" (Subaru/VLT) (~ 50 stars)

New Efforts for Finding Very Metal-Poor Stars

- Stellar observations at medium-resolution have been obtained during the course of the Sloan Digital Sky Survey (SDSS)
- Calibration of spectrophotometry / telluric bands
- Directed studies (e.g., BHB stars, C-rich stars)
- "Failed QSO" targets
- New stellar observations being obtained during the course of SDSS extension program SEGUE

SEGUE: The Sloan Extension for Galactic Understanding and Exploration

- Use existing SDSS hardware and software to obtain:
- 3500 square degrees of additional ugriz imaging at lower Galactic latitudes
- Stripes chosen to complement existing areal coverage; includes several vertical stripes through Galactic plane
- Medium-resolution spectroscopy of 250,000 "optimally selected" stars in the thick disk and halo of the Galaxy
- 200 "spectroscopic plate" pairs of 45 / 135 min exposures
- Objects selected to populate distances from 1 to 100 kpc along each line of site
- Proper motions available (from SDSS) for stars within $\sim 5 \mathrm{kpc}$

SEGUE uses stellar probes of increasing absolute brightness to probe increasing distances in the disk, thick disk and Milky Way halo.

Likely (?) Numbers of Detected MP Stars from SEGUE

- Actual numbers will depend on the shape of the halo Metallicity Distribution Function

$$
\begin{array}{lll}
- & {[\mathrm{Fe} / \mathrm{H}]<-2.0} & \sim 20,000 \\
- & {[\mathrm{Fe} / \mathrm{H}]<-3.0} & \sim 2,000 \\
(\mathrm{EMP})
\end{array}
$$

$$
\begin{array}{llll}
- & {[\mathrm{Fe} / \mathrm{H}]<-4.0} & \sim 200 ? & \text { (UMP) } \\
- & {[\mathrm{Fe} / \mathrm{H}]<-5.0} & \sim 20 ? & (\mathrm{HMP}) \\
- & {[\mathrm{Fe} / \mathrm{H}]<-6.0} & \sim 2 ? & \text { (MMP) }
\end{array}
$$

SEGUE observing plan and status as of May 2007

\checkmark SDSS Imaging scan
Declination = -20 degrees
首 Planned SEGUE scan (3500 sq deg)
Planned SEGUE grid pointings (200)
Sgr stream planned scan
目 \cup Completed SEGUE imaging
Completed SEGUE plate pointing

High-Res Observations To Date

Telescope	Instrument	Resolution $R=\lambda / \Delta \lambda$	Wavelength Coverage \AA	No. stars
HET	HRS	15000	$4500-7000$	112
Keck	HIRES	45000	$3000-10000$	24
Keck	ESI	6000	$3000-10000$	27
Subaru	HDS	45000	$3000-5800$	11

Recalibration of Individual Techniques

| -1.5 | -1.2 | -0.9 | -0.6 | -0.3 | 0.0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$0.6 \quad 0.9$
1.2
1.5

Contours for $[\mathrm{Fe} / \mathrm{H}]$ deviation(Individual - Hires)

Contours for $[\mathrm{Fe} / \mathrm{H}]$ deviation(Individual - Hires)

Sample SDSS-I Spectra with $[\mathrm{Fe} / \mathrm{H}] \sim \mathbf{- 2 . 0}$

Sample SDSS-I Spectra with $[\mathrm{Fe} / \mathrm{H}] \sim \mathbf{- 2 . 5}$

Sample SDSS-I Spectra with $[\mathrm{Fe} / \mathrm{H}]<-3.0$

The Low-Metallicity Tail of the Metallicity Distribution Function of SDSS-I Stars

The Low-Metallicity Tail of the Metallicity Distribution Function of SEGUE Stars

What's Next?

- One can now target outer-halo stars in order to elucidate their chemical histories ([a/Fe], [C/Fe]), and possibly their accretion histories
- One can now preferentially SELECT outer-halo stars based on proper motion cuts in the local volume (SEGUE-II)
- One can now take advantage of the lower [Fe/H], in general, of outer-halo stars to find the most metalpoor stars (all three stars with $[\mathrm{Fe} / \mathrm{H}]<-4.5$ have properties consistent with outer halo membership)
- One can soon constrain models for formation / evolution of the Galaxy that take all of the chemical and kinematic information into account (e.g., Tumlinson 2006)

