Determination of the stellar reaction rates of ${}^{17}O(\alpha, n){}^{20}Ne$ and ${}^{17}O(\alpha, \gamma){}^{21}Ne$

イロト イポト イヨト イヨト

Andreas Best

 ${}^{17}O(\alpha, n)^{20}Ne$ and ${}^{17}O(\alpha, \gamma)^{21}Ne$

- 3

Is 16 O a neutron poison (in the weak s process)?

- Unknown ratio of reaction rates $\frac{{}^{17}O(\alpha,n)^{20}Ne}{{}^{17}O(\alpha,\gamma)^{21}Ne}$
- Theoretical calculation gets a 3 orders of magnitude smaller ratio
- Large effect on final abundances

Andreas Best (Notre Dame)

October 21, 2010 2 / 17

Current situation

- No experimental data on $^{17}{\rm O}(\alpha,\gamma)$
- Previous (α, n) experiment analized some dubious resonances
- Target 50% ¹⁷O, 29% ¹⁸O
- Unknown ${}^{17}O(\alpha, n_1)$ channel \Rightarrow uncertain efficiency

Our experiments

• Remeasured ${}^{17}O(\alpha, n){}^{20}Ne$

- High efficiency PE moderated ³He detector
- Detailed GEANT4 simulation and efficiency measurements
- Used highly enriched ^{17}O (> 90%) for target production
- $Q = 587 \, {
 m keV}$, two neutron groups for $E_{lpha} > 1293 \, {
 m keV}$
- ► Determined ¹⁷O(α , n_1) branching \Rightarrow neutron energy \Rightarrow efficiency
- Measured ${}^{17}\mathrm{O}(\alpha,\gamma){}^{21}\mathrm{Ne}$
 - Scan with lead shielded HPGe detector
 - 1st excited state in ²¹Ne populated by ¹⁸O(α, n₁)²¹Ne as well: measured with enriched ¹⁸O

э

- 4 週 1 - 4 三 1 - 4 三 1

¹⁷O(α , n) setup

Polyethylene moderated, 20 ³He counters in two rings (8 + 12)
Anodized Ta₂O₅ targets using 90.1% enriched ¹⁷O water

< ロト < 同ト < ヨト < ヨト

Neutron detector efficiency determination

- Efficiency simulations with GEANT4 and MCNP
- \bullet Measurements between 50 keV and 600 keV via $^{51}V(p,n)$
- Limited information about neutron energy using inner/outer ring

$^{17}\mathrm{O}(lpha, n_1)^{20}\mathrm{Ne}$ setup

- Ta_2O_5 target at 45 deg, $\approx 20\%$ efficiency HPGe detector
- Polyethylene disk in front of detector to scatter neutrons
- Looking for 1634 keV transition in Ne²⁰

< 回 > < 三 > < 三 >

 (α, n) and (α, n_1) yield

 $^{17}O(\alpha, n)^{20}Ne$ and $^{17}O(\alpha, \gamma)^{21}Ne$

Azure

- Multi-channel R-Matrix code
- Fortran version released to public last year
- \bullet Translated into C++ by Ethan
- Implemented target integration routine

Azure

- Multi-channel R-Matrix code
- Fortran version released to public last year
- \bullet Translated into C++ by Ethan
- Implemented target integration routine

$^{17}\mathrm{O}(lpha,\gamma)^{21}\mathrm{Ne}$ setup

- Prominent transition at 351 keV (²³⁸U line there)
- Contribution from ${}^{18}O(\alpha, n_1){}^{21}Ne$
- Lead castle, larger (${\approx}55\%$) HPGe

- ▲ 17

Efficiency

- Absolute measurements using calibrated sources, standard resonances $({}^{27}{\rm Al}({\rm p},\gamma))$
- Relative efficiency data from ⁵⁶Co

 ${}^{18}O(\alpha, n_1){}^{21}Ne$

October 21, 2010 13 / 17

Excitation curve

- Found three resonances at 998 keV, 1386 keV, 1620 keV
- 1450 keV yield due to ${}^{18}O(\alpha, n_1){}^{21}Ne$ contribution

Andreas Best (Notre Dame)

 $^{17}O(\alpha, n)^{20}Ne$ and $^{17}O(\alpha, \gamma)^{21}Ne$

Branchings

Resonance strengths, γ vs. neutron channel (Denker)

- $\omega \gamma_{\gamma}(810 \, {\rm keV}) = 5.6 \pm 0.6 \, {\rm meV}$ n: 4.2 meV
- $\omega \gamma_\gamma(1122\,{
 m keV})=1.2\pm0.2\,{
 m meV}$ n: 39 meV
- $\omega \gamma_{\gamma}(1311 \,\text{keV}) = 105 \pm 11 \,\text{meV}$ n: 7.5 eV

Conclusion

- Completed ${}^{17}O(\alpha, n){}^{20}Ne$ experiment
- Did initial ${}^{17}O(\alpha, \gamma){}^{21}Ne$: stronger than expected!
- \bullet Possibly extend (α,γ) to lower energies using higher efficiency setup