¹University of Notre Dame

²Triangle Universities Nuclear Laboratory

³Duke University

⁴University of North Carolina

Photoexcitation of astrophysically important states in ²⁶Mg

R.J. deBoer¹ A. Best¹ J. Görres¹ C. Iliadis^{2,4} R. Longland^{2,4} G. Rusev^{2,3} W. Tan¹ A.P. Tonchev^{2,3} M. Wiescher¹

October 20, 2010

Astrophysical Motivation: the s-process

Where can we get some neutrons to fuel the s-process?

- Weak and Main s-process
 - ${}^{14}N(\alpha, \gamma){}^{18}F(\beta^+){}^{18}O(\alpha, \gamma){}^{22}Ne(\alpha, n){}^{25}Mg$

$${}^{22}\mathrm{Ne} + \alpha \rightarrow {}^{26}\mathrm{Mg}^{*} \rightarrow \begin{cases} {}^{22}\mathrm{Ne} + \alpha \\ {}^{26}\mathrm{Mg} + \gamma \\ {}^{25}\mathrm{Mg} + n \end{cases} (E_{\alpha} > 565 \text{ keV})$$

- Gamow Energy Range: 375 keV $< E_{\alpha} < 1055$ keV ($T \sim 0.3$ GK)
- \triangleright Need J^{π} , energy, and partial widths of states in this energy region

Nuclear Motivation: previous experiments

- How can we study these reactions?
 - Directly: ²²Ne(α, γ)²⁶Mg and ²²Ne(α, n)²⁵Mg
 - Indirectly: ²²Ne(⁶Li, d), ²⁵Mg(n, γ), ²⁶Mg(γ, γ'), and ²⁶Mg(γ, n)
- Goal: Measure energy (and width?) of $E_{\alpha} = 635 \text{ keV}$ resonance ($E_{\gamma} = 11.15 \text{ MeV}$)

Figure: Jaeger et al. (2001)

High Intensity γ -ray Source

 Triangle Universities Nuclear Laboratory's (TUNL) High Intensity γ-ray Source (HIγS) produced by the Duke Free Electron Laser (DFELL).

- $E_{\gamma} = 1$ to 100 MeV
- "nearly monoenergetic" (Gaussian energy distribution – Γ ~ 200 keV @ 10 MeV)
- circular or linear polarization

Figure: $HI\gamma S$ website

4π ³He Counter Setup

- April 2010
- enriched ²⁶MgO powder
- Average cross section measurement (~200 keV)
- Test run for to check count rates. and background for Time-of-Flight measurement

Average total cross section

Figure: black points: Fultz *et al.*(1971), red points: current work ${}^{26}Mg(\gamma, n){}^{25}Mg$ (top), ${}^{nat}Mg(\gamma, n){}^{25}Mg$ (bottom)

Neutron Time-of-Flight Setup

- August 2010
- B. L. Berman, R. L. Van Hemert, and C. D. Bowman, Phys. Rev. Lett. 23, 386 (1969)

•
$$E_n = 54$$
 keV ($E_{lpha} = 635$ keV)

- Three Li-Glass scintillators, nine liquid scintillators
- 179 ns between 3 ns wide γ-pulses, target to detector distance ~50 cm

Preliminary Results

Liquid Scintellator Detectors (BC501A)

Summery

- Measured ²⁶Mg(γ , *n*) average cross section ($E_{\gamma} = 11.15$ to 12.2 MeV) agrees well with previous measurement
- Preliminary ToF (γ, n) data shows intresting and unexpected results
- Can extract energy and width information
- A future ${}^{26}Mg(\gamma, n)$ ToF run would be useful to determine J^{π} 's

