The Superheated Target for Astrophysics Research

or "Low energy measurements of the $^{12}\text{C}(\alpha,\gamma)^{16}\text{O}$ reaction with a bubble chamber"

Claudio Ugalde, for the **STAR** collaboration.

Argonne, Duke, Chicago, Chapel Hill, Fermilab, Illinois

12 C(α,γ) 16 O Reaction

Key reaction for nucleosynthesis in massive stars

Affects the synthesis of most of the elements of the periodic table

Sets the C to O ratio in the universe

Determines the minimum mass a star requires to become a supernova

S. Woosley, A. Heger, Phys. Rep. 442 (2007) 269

FIG. 1. Partial energy-level diagram for $^{16}{\rm O}$ (adapted from [4]).

Bubble chamber at HIγS

- The target density is 1000-10000x higher than gas targets.
- Superheated water will nucleate from α and ¹²C recoils
- The detector is insensitive to γ -rays.
- Isotopically pure water is needed.
- Prototype tested at HIγS

H₂O bubble chamber

Nucleation thresholds (Water)

Recipe for the preparation of superheated water.

Experiment 1 R134a $^{19}F(\gamma,\alpha)^{15}N$ E γ =8-10 MeV Low beam intensity Proof of principle	Experiment 2 Water $^{16}O(\gamma,\alpha)^{12}C$ E γ =9-10 MeV Low beam intensity Engineering test
Experiment 3 C_4F_{10} $^{19}F(\gamma,\alpha)^{15}N$ $E\gamma=4.5~\text{MeV}$ Full beam intensity	Experiment 4 Water $^{16}\text{O}(\gamma,\alpha)^{12}\text{C}$ E γ =8.1 MeV Full beam intensity
Backgrounds	Production run

Experiment 1

R134a

 19 F(γ,α) 15 N

Eγ=8-10 MeV

Low beam intensity

Proof of principle

Experiment 2

Water

 $^{16}\text{O}(\gamma,\alpha)^{12}\text{C}$

Eγ=9-10 MeV

Low beam intensity

Engineering test

Experiment 3

 C_4F_{10}

 19 F(γ , α) 15 N

Eγ=4.5 MeV

Full beam intensity

Backgrounds

Experiment 4

Water

 $^{16}\text{O}(\gamma,\alpha)^{12}\text{C}$

Eγ=8.1 MeV

Full beam intensity

Production run

Proof of principle: as predicted, photodisintegration does induce nucleation

To keep the bubble chamber count rate at 0.1Hz levels, the beam intensity had to be reduced from $1x10^7$ to $5x10^3$ γ/s .

γ-ray beam @ 8.7 - 10.0 MeV

Counted for ~1 hr per data point

Experiment performed in two 12 hour sessions

- •Event distribution from 1 hour of beam.
- •2% of events appear outside the beam region.
- •No surface nucleation problems!

STAR v2 v1 v3

Thanks!

(By the way, STAR is an amazing neutron detector as well)