Comparison Between Measured Gamow-Teller Distributions and the Corresponding Electron Capture Rates for pf-shell Nuclei in Pre-supernova Stars

Arthur L. Cole Kalamazoo College, Kalamazoo, Michigan

Electron Capture and Supernovae

Electron Capture: $e^- + A(Z,N) \rightarrow A(Z-1,N+1) + V_e$

Core-Collapse Supernova

http://www.solstation.com/x-objects/xte-bh.htm

Influences Dynamics of Supernova

Type la Supernova

David A.Hardy www.astroart.org & PPARC

Provide constraints on models

Electron Capture and B(GT)

Electron Capture \Rightarrow Gamow-Teller Transitions:

Gamow-Teller (GT) (spin-flip) $\Delta S = 1, \Delta L = 0, \Delta J = 1, \Delta T = 1$ Transition Strength = B(GT)

B(GT) measured via charge-exchange

(n,p), (d,²He), (t,³He) e.g. t + ⁵⁸Ni \rightarrow ⁵⁸Co + ³He

$$B(GT) \propto \frac{d\sigma(q=0)}{d\Omega}$$

Electron Capture Rate \propto B(GT)

Core-Collapse Supernova and B(GT)

Electron Capture Rate \propto B(GT)

Consider two models for calculating B(GT)

WW (Woosley, Weaver) Fuller, Fowler, Newman (FFN) Weak Interaction rates •Independent Particle Model (IPM) •No interaction b/t valance nucleons

LMP (Langanke, Martinez-Pinedo) & Heger, Langanke, LMP Weak Interaction rates

•Shell Model (SM) Calculations

- Interaction b/t valance nucleons leads to fragmentation and quenching of B(GT)
 - •pf-shell nuclei A~45-65 important
 - •Stable and Radioactive Nuclei
 - •Several Nuclei are important

Can Not Measure them all

Where to Start?

Nuclei for which there exist measured B(GT): ⁴⁵Sc,⁴⁸Ti,⁵⁰V,⁵¹V,⁵⁵Mn,⁵⁴Fe,⁵⁶Fe,⁵⁹Co,⁵⁸Ni,⁶⁰Ni,⁶²Ni,⁶⁴Ni,⁶⁴Zn

B(GT) measured via charge-exchange

(n,p), (d,²He), (t,³He) e.g. t + ⁵⁸Ni \rightarrow ⁵⁸Co + ³He

$$B(GT) \propto \frac{d\sigma(q=0)}{d\Omega}$$

EC Rate Comparison: KB3G

EC Rate Comparison: GXPF1a

Collaboration

A. L. Cole, T. S. Anderson Physics Department, Kalamazoo College,

B. A. Brown, L. Uher, R. G. T. Zegers National Superconducting Cyclotron Laboratory, Michigan State University, Department of Physics and Astronomy, Michigan State University, Joint Institute for Nuclear Astrophysics, Michigan State University

G. W. Hitt

Khalifa University of Science, Technology & Research