Measurements of the Astrophysically Important ${}^{40}Ca(\alpha,\gamma){}^{44}Ti$ Reaction Rate

> Daniel Robertson JINA Frontiers Meeting 21-23 Oct. 2010

Why study ⁴⁴Ti at all?

- Recent observations of live ⁴⁴Ti highlight its use as a probe for SNRs (eg Cas A, COMPTON / INTEGRAL)
- Relatively short half-life ($t_{1/2}$ =58.9 yrs)
- Created in CC SN which enrich the ISM
- Observational & modeling differences $(1.6 \times 10^{-4} M_{\odot})$
 - Larger by x 2-10 than predicted
 - Mass cut dependence
 - Reaction rate discrepancies

Getting to know ⁴⁴Ti

- First unstable nucleus of the α -chain
- Relatively short lived ($t_{1/2}=58.9 \pm 0.3$ yrs), *Ahmad et al*
- Detectable through 68, 78 and 1157 keV γ-lines
- Predominantly created through ${}^{40}Ca(\alpha,\gamma){}^{44}Ti$ reaction
- Produced in the inner layers of SN explosions, during α-rich freeze-out

Previous measurements

Experimental Approaches

Direct γ-Counting

- Performed at DTL, Bochum
- He incident on Ca target
- Direct γ-decay counting
- 4π Summing technique
- Yield curve measured

AMS Counting

- Gas cell activation, catcher implantation
- Chemical separation
- Ion acceleration and AMS measurement
- Discrete resonance strengths

Experimental Set-up

Dynamitron Tandem Laboratory – Ruhr-Universität Bochum, Germany

- 2⁺ He beam, 3 4.6 MeV
- ~ $2 e \mu A$ on target

- Ca targets on Cu backing
- Evaporated on-site, rapidly installed
- Both thin (110 nm) and thick (530 nm) targets used

γ-summing background

A.Spyrou et al; Phys. Rev. C 76 (2007) 015802

Experimental reality

Real experimental reality

Yield curve & resonance structure

Reaction rate comparison

New information

Have we fixed anything?

- To be honest...yes and no
- New measurements support previous RMS data
 40 % increase in ⁴⁴Ti yield
- Still not in-line with observed yields
- More data needed...
- Less confusion about reaction rate
- \succ Rate increase from prompt γ measurements
- Onus moves towards SN modeling

With Thanks To:

Direct γ-Counting H-W. Becker², A. Best¹, J. Görres¹, M. Wiescher¹

AMS Counting

M. Bowers¹, P. Collon¹, W. Lu¹, M. Paul³, C.Schmitt¹

- ¹ NSL, Notre Dame
- ² Ruhr-Universität Bochum,
- ³ Racah Institute of Physics, Hebrew University

TABLE 4				
Order of Importance of Reactions Producing $^{44}{ m Ti}$ at $\eta=0$				
	Reaction Rate Multiplied by $1/100$		REACTION RATE MULTIPLIED BY 100	
Rank	Reaction	⁴⁴ Ti Change (percent)	Reaction	⁴⁴ Ti Change (percent)
1	$^{44}{\rm Ti}(\alpha, p)^{47}{\rm V}$	+173	${}^{45}V(p, \gamma){}^{46}Cr$	- 98
2	$\alpha(2\alpha,\gamma)^{12}C$	-100	$\alpha(2\alpha, \gamma)^{12}C$	+67
3	$^{40}Ca(\alpha, \gamma)^{44}Ti$	-72	$^{44}{ m Ti}(\alpha, p)^{47}{ m V}$	-89
4	${}^{45}V(p, \gamma){}^{46}Cr$	+57	$^{44}\text{Ti}(\alpha, \gamma)^{48}\text{Cr}$	-61
5	57 Ni (p, γ) 58 Cu	-47	57 Co(p, n) 57 Ni	+25
6	57 Co(<i>p</i> , <i>n</i>) 57 Ni	-33	40 Ca(α , γ) 44 Ti	+22
7	$^{13}N(p, \gamma)^{14}O$	-16	57 Ni $(n, \gamma){}^{58}$ Ni	+10
8	${}^{58}{\rm Cu}(p, \gamma){}^{59}{\rm Zn}$	-14	54 Fe(α , n) 57 Ni	+9.4
9	36 Ar(α , p) 39 K	-11	${}^{36}\text{Ar}(\alpha, p){}^{39}\text{K}$	+5.5
10	$^{12}C(\alpha, \gamma)^{16}O$	+ 3.5	${}^{36}\mathrm{Ar}(\alpha, \gamma){}^{40}\mathrm{Ca}$	+5.3

Experiment 1 of 2 – AMS at the NSL

1) Sample activation & preparation

3) Separation & theGFM approach

AMS experimental approach – 3 stage

Detection and ⁴⁴Ti

System sensitivity

- Measured
 - Sample $2 = 5.7 \times 10^{-15} 4^{4} \text{Ti/nat}$ Ti, $\omega \gamma_{\text{int}} = 3.7 \pm 1.8 \text{ eV}$
 - Sample $3 = 2.2 \times 10^{-14} \, ^{44}$ Ti/^{nat}Ti, $\omega \gamma_{int} = 2.7 \pm 0.7 \, eV$
 - Sample 4 = 2.0 x 10⁻¹⁴ ⁴⁴Ti/^{nat}Ti, $\omega \gamma_{int} = 6.8 \pm 1.1$ eV
 - Sample 5 = 4.7 x 10⁻¹⁴ 44 Ti/nat Ti, $\omega \gamma_{int} = 8.2 \pm 0.4 \text{ eV}$

Current sensitivity ~ 4.5 x 10⁻¹⁵ ⁴⁴Ti/^{nat}Ti

24

Resultant measurements

Experiment 2 of $2 - \gamma$ measurement at Bochum

Experimental Set-up

Dynamitron Tandem Laboratory – Ruhr-Universität Bochum, Germany

- 12 x 12 in NaI(Tl) detector
 35 mm central bore hole
 Covering ~98 % of 4π
 With E_{res} ≈ 2 % at 10 MeV
- 2⁺ He beam, 3 4.6 MeV
- ~ $2 e \mu A$ on target

- Ca targets on Cu backing
- Evaporated on-site, rapidly installed
- Both thin (110 nm) and thick (530 nm) targets used

γ-summing background

Experimental reality

Real experimental reality

Yield curve & resonance structure

Yield curve & resonance structure

Astrophysical reaction rate

• So far we only have the number of ⁴⁴Ti events

$$\mathbf{\hat{Y}} = \frac{44}{\alpha} \mathbf{Ti}$$

$$\mathbf{\hat{Y}} = \frac{44}{\alpha} \mathbf{Ti}$$

$$\mathbf{\hat{Y}} = \frac{\lambda^2 \varepsilon_{\Sigma}}{2\varepsilon} \left(\frac{\mathbf{m}_{p} + \mathbf{m}_{t}}{\mathbf{m}_{t}} \right) \mathbf{\hat{\omega}} \mathbf{\hat{\gamma}}$$

$$\omega \gamma = \frac{2\mathbf{J}_{R} + 1}{(2\mathbf{J}_{t} + 1)(2\mathbf{J}_{p} + 1)} \frac{\Gamma_{t} \Gamma_{\gamma}}{\Gamma}$$

$$\mathbf{N}_{A} \langle \sigma v \rangle = 1.54 \times 10^{11} (\mu T_{9})^{-3/2} \mathbf{\hat{\omega}} \mathbf{\hat{\gamma}} \exp\left(-11.605 \frac{\mathbf{E}_{R}}{\mathbf{T}_{9}}\right)$$

Reaction rate comparison

New information

Have we fixed anything?

• To be honest...yes and no

- New measurements support previous RMS data
 40 % increase in ⁴⁴Ti yield
- Still not in-line with observed yields

• More data needed...

Conclusions

- > New AMS system is viable
- > AMS limited to small E steps for nuclear astro.
- > Further effort should give ~ 10^{-16} sensitivity
- Less confusion about reaction rate
- \triangleright Rate increase from prompt γ measurements
- Onus moves towards SN modeling

After thoughts

- AMS system
 - Further chemical separation of calcium
 - Further investigate copper catcher
 - Better transmission
- In-beam experiment
 - More intense α -beam, & thinner targets
 - Further low energy measurements
 - Possible higher energy measurements
- Something called St.George ???

Ranges of interest

H. Nassar et al. / Nuclear Physics A 758 (2005) 411c-414c

Prompt γ measurements

- *12 resonances measured 7.627 8.767 MeV*
- *Expanded later to* 8.577 10.527 *MeV*

AMS activation and measurements

- Initial strong doublet activation, 9.23 & 9.24 MeV
- Integrated measurement over astrophysical region
 7.3 9.3 MeV

Recoil Mass Separator measurement

- >100 energy steps covering 7.329 9.326 MeV
 - Utilizing both thin and thick targets

Measurements for this work

- In beam measurements 7.854 9.308 MeV
 - >150 energy steps with thick and thin target
- *Four AMS activation and measurements*

Accidents Will Happen

Reaction rate relations

