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X-Ray Bursts!

= What are X-Ray Bursts (XRBs)?
- Types of x-ray bursts
- Luminosity profiles and other observables

= Nucleosynthesis in XRBs
- Nucleosynthetic processes
- Waiting points
- Final elemental abundances

= How do we study XRBs?
- Models and simulations
- Experimental Studies
e Mass measurements
e p-decay lifetimes
e Reaction rate measurements
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Type |- X- Ray Bursts (XRBs)

Neutron stars: |
1.4 M, 10 km radius n _
* . Norma] star
.
. & .- ’ . w a -
Acctetion.rate ~'10%/10° M /year -  § WA . .»

Peak x-ray burst temperature ~ 1.5 GK
Recurrence rate ~ hours to days -

Burst duration of 10~ 100 §

Observed x-ray outburst ~10% — 10% ergs
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Observables

e “f]
= Luminosity profiles o 20

- During thermonuclear runaway

e |ast for 10 - 100s

e single peaked ; N "

e reoccur every few hours or weeks A,
- Atypical bursts: s sf ]

e higher luminosities: 10*2 ergs o 0

(superbursts- Laurens Keek
e multiple peaks

observed x-ray outbursts of 10%- 10
o]
Typical bursts: .

N

D.K. Galloway
et al., ApJ 601
466 (2004).

G. Zhang et al., Mon.
Not. R. Astron. Soc.,
398, 368 (2009).

e short recurrence times 10*
(Andrew Steiner) \

= Energy generation

Count mate

L. Keek et al., Ap)
718, 292 (2010).

= Conductivity -
= Gravitational waves

a

10 20
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Time since start event (minutes)
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XRB Nucleosynthesis

= Before burst hot CNO cycle fused H into He
. . _rret;:lar':'-[ I.|:|"_'l
= Triple-a reaction creates 2C from i
three o particles cac
Cu!l'.:l]
= qp-process
- a series of (a,p) and (p,y) reactions o
= rp-process o
- a series of (p,y) reactions e e
followed by B+ decays T "
- possible endpoints for Lt
the rp-process Sy
e SnSbTe-mass region a
e leakage from the SnSbTe mass region? (J. Jose et al, ApJS 189,
204 (2010))
o weaker branch into the SnSbTe cycle (V.-V. Elomaa et al., PRL
102, 252501 (2010))
S
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B
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XRB Nucleosynthesis
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Waiting Points
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Modeling XRB Nucleosynthesis

= Thermodynamical codes (e.g. AGILE- J. L. Fisker et al., ApJS
174, 261 (2008))
- Fully 1D, multi-zone model coupled to complete nuclear
reaction network

- Include hundreds of nuclei and thousands of processes

e
-

o
= Sensitivity studies (e.g. A. Parikh et al., ApJS 178, 110 (2008))
- Post-processing calculations
- Used to determine “important” reaction rates
- vary rates by factors of 10 up and down

- thousands of reactions:

e under 30 reactions that significantly impact final elemental
abundances of 3 or more nuclei

e under 20 reactions that affect the energy output by > 5%

= Model inputs
- nuclear masses
- decay half-lives
- accurate reaction rates

S
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Studying XRBs in the Laboratory

= Mass Measurements

- Penning Traps (e.g. Jonathon Van Schelt, Dan Lascar, Sebastian George)

e Canadian Penning Trap (CPT) at ANL, ISOLDETRAP at CERN, JYFLTRAP at
Jyvaskyla, SHIPTRAP at GSI, LEBIT at MSU, etc.

- TOF measurements
- Q-value measurements

= B-decay lifetime measurements

= Reaction rate measurements
- Direct measurements

e Radioactive lon Beams production
e Experiments

- Indirect measurements

>
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Penning Trap Measurements

End Cap Electrode

A\

*Constant axial
magnetic field B

=lons orbit B with
cyclotron frequency
wc = qm/B

=Harmonic field
along B confines
particles in trap

=Applying wc to the ring

electrode gives the MCP E—
greatest orbital energy to SF=F
the ions

*When the ions are ejected

from the trap the orbital Va0
energy gets translated to Magnetic
linear energy -
*The TOF from the trap to gi:nning
a detector is measured e

VB =0

*The minimum times
occurs when the ions have
the highest energy - o«

End Cap Electrode

TOF
Detection

|

Linecar
Energy

I-)

Orbital
Energy

lons from the Penning trap

)

70‘(11

Time of flight spectrum:
minimum at frequency of wc

3 ‘
.
? .0. ‘000'

T 00?'? .-

Agplnd Freguency - 1320698 54 M2
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Measured Masses along the rp-process

rp process ceH
endpoint Ba
i
—
rp process 1
midpoint sn '
Cd
h
|
ay . R |
waiting-point
. Mo
nuclides
Ir
Sr[ 1]
r % |
e | 62
] 0
Ge 58
- 6
Zn
2
Ni L1
28 30 32 34 36 38 40 42 44 46 48 50

CPT mass measurements

>

SHIPTRAP and JYFLTRAP
measurements
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A. Kankainen ef al., Eur. Phys. J. A 29, 271 (2006).
A. Martin et al,, Eur. Phys. J. A 34, 341 (2007).
C. Weber et al., Phys. Rev. C 78, 054310 (2008).
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Q-value measurements:

. " ? 5 .:: °
§o @ § @ oNa |
= Using (3He,t) reactions on thin, ion- . 3
implanted foils of 2°Ne, 24Mg, 28Si, 32S, g ‘J; B 2Al
* Momentum analyzing the reaction = Y
products gives the momentum of the -~
tritons at the focal plane e ]
= Masses of 20Na, 24Al, 28P, and 32Cl are - ¥ | 2l '
. " u‘W‘.
determined from momenta > '
| ¥ i
Dipol 2 Ei:! 1P 5
.‘.-“‘ o ‘—‘“‘-dC A--

“x - roK nx
Focal-glane posion (charel)

Reaction Q value [22] Q value (present)
“Ne(p,y)*"Na 2193(7) 2190.1(11)
“Mg(p,y)* Al 1872(3) 1863.0(14)
TSi(p,y)*P 2063(3) 2051.7(12)
“S(p,y)Cl 1574(7) 1578.2(19)"
“Ar(p,y)*K 1668(8) 1658.4(8)

C. Wrede, J. Clark, C. M. Deibel et al., PRC 82, 035805 (2010).
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Studying XRBs in the Laboratory

= Mass Measurements

- Penning Traps (e.g. Jonathon Van Schelt, Dan Lascar, Sebastian George)

e Canadian Penning Trap (CPT) at ANL, ISOLDETRAP at CERN, JYFLTRAP at
Jyvaskyla, SHIPTRAP at GSI, LEBIT at MSU

- TOF measurements
- Q-value measurements

= B-decay lifetime measurements

= Reaction rate measurements
- Direct measurements

e Radioactive lon Beams production
e Experiments

- Indirect measurements

>
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B-decay lifetimes

= B-decay lifetimes set the time scale for XRBs since the they
partially define how long the heavier elements can build up at

waiting point nuclei

= 95Cd half-life measured at NSCL

- Projectile fragmentation technique was used to

produced %6Cd

- lons implanted in a double-sided Si strip detector and

decays counted

<) MK

4 -

=  Most of the important f-decay halflives are now thought to be

measured

Counts

Log(ume) (seconds)

POOLH 1]

o solar

Overabundasce raso t

10" 1,
i a

10" ] .
10° ’
10" !
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o ]

this work
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1<
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D. Bazin et al., PRL 101, 252501 (2008)
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Studying XRBs in the Laboratory

= Mass Measurements

- Penning Traps (e.g. Jonathon Van Schelt, Dan Lascar, Sebastian George)

e Canadian Penning Trap (CPT) at ANL, ISOLDETRAP at CERN, JYFLTRAP at
Jyvaskyla, SHIPTRAP at GSI, LEBIT at MSU

- TOF measurements
- Q-value measurements

= B-decay lifetime measurements

= Reaction rate measurements
- Direct measurements

e Radioactive lon Beams production
e Experiments

- Indirect measurements

>
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Reaction Rates

= Reaction rates important for XRBs
- (p,y), (a,p), and (a.,y) (see Richard Cyburt)

= Direct measurements of reaction rates
- Radioactive lon Beams (RIBs)

- Recoil separators (DRAGON @ TRIUMF,
St. George @ ND, SHARQ @ RIKEN,
SECAR @ FRIB)

- Coincidence measurements (ANL)

- Active target measurements (ORNL,
ReA3)

= |ndirect measurements:

- Determine resonance energies, spins,
and partial widths

- Use transfer reactions to populate
states in compound nuclei

Ga (3
Zn (3

NI (28]

|||||||

i)
(45)
4

= 11
J‘\".' ((“’> _ 1.5399x10 2 ((')Y )I 6’~” GOSE, /T,

(nz,)"”

(27, +1)

!

s, ), )

r,r,
rhu’uf )'.
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Radioactive lon Beams

s;
1

In-flight method

regonator

Stable Beam Gas
N as E
Cell =

fragment
separator

Fxamples:

radioactive ion beam i I’., “li, K"\ i, 5(‘(.‘0

- radoocive
on beam

fo experiment

Two accelerator method

ISOL (Isotope Separation On-Line) method
> LI

Reacceleration of
fragmentation and fission
products (ReA3 and CARIBU)

a
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Direct Measurements:
(o,p)- process measurements at ANL

Uses the in-flight method to -
produce RIBs i ren

\ 'S to Enge
4 Spectrograph

Studies the time-inverse (p,0)
reactions in inverse kinematics

Monte Carlo simulations and

coincidence Spectrum Preliminary p(3Cl,*°S)a

cross sections

Detects the a-particles in

coincidence with the heavy
residual nuclei

| i ; : _/.///9____, * Owa
% i ol /f :\:.:\T_"«xu
: . 3 ‘l 00':":' 65
Normalizing to beam current ' .l |

and target thickness cross
sections are determined

Future direct (a,p) reaction

measurements planned with
new HELIOS device
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Direct Measurements:
21Na(p,y)?*Mg at TRIUMF

= Radioactive 2!Na beam was
delivered by the ISAC facility at
TRIUMF

= RIBincident on a hydrogen-gas
target

= v‘s were detected by a BGO array
in coincidence with the 2°Mg
particles

=  22Mg particles separated from
beam and other reaction products
using the DRAGON recoil
separator (a series of magnetic
dipoles and quads and
electrostatic dipoles) and detected
with an MCP

= The position of the resonance in
the gas target gives the resonance
energy and the yield gives the
resonance strength

>
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Reaction Rates

= Reaction rates important for XRBs
- (p,y), (a,p), and (a,y) (see Richard Cyburt)

= Direct measurements of reaction rates

- Radioactive lon Beams (RIBs)

- Recoil separators (DRAGON @ TRIUMF,
St. George @ ND, SHARQ @ RIKEN,
SECAR @ FRIB)

- Coincidence measurements (ANL)
- Active target measurements (ORNL,

REA3) 1
5 er
1\," ((T\') _ 1.5399 x} IIO 2 ((_l)Y )’ ()—II_ WSE, /T,
. (u7,) ,
= |ndirect measurements:
- Determine resonance energies, spins, (27 +1) rr
and partial widths wy, = i ( -y )
- Use transfer reactions to populate (2-/‘«/ + ')(2-’,, + ') oot ),
states in compound nuclei
e
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Indirect Measurements:

Studying states in 22Mg for the

18Ne(a,p)?'Na reaction

Using transfer reactions (e.g. (p,t) at Osaka by ND

group) states of the compound nucleus can be

populated and their properties measured
- Resonance energies Er

- Spins J=

= These values can be use to calculate

- Reaction rates

-1

Reaction rates (cm mol s )

T T T

ST T

1T TN

T

M|

- Model XRBs
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Reaction rate measurements in the future

= HELIOS
- Direct (a,p) measurements

- Indirect studies (e.g.
(°*He,d))

= Gas-jet target
- Direct (p,y) measurements

- Indirect transfer
measurements AT-TPC

= ReA3 and FRIB at MSU

- AT-TPC for indirect i
measurements (e.q. Rings o 12 Supee X

(3He’d)) up 10 3 rings of 12

Dackns with 2om thick Cl ’

— ANASEN for direct (a,p) o sosoms s

B4 *HV resatve wires

. . = 8, with X3 positon

- SECAR for direct reaction . ...
rate measurements ot view 270 O

i

. S § — 0w o LTS P

A

SECAR

N
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Conclusions

XRBs represent the necessary interplay between observers, modelers,
and experimentalists

Many observed phenomena still unexplained

Models have just recently been able to incorporate multiple zones
and large reaction rate networks, but are still based mostly on
theoretical reaction rates

Most -decay lifetimes have now been measured

Still need actual experimental reaction rates
- Future efforts using indirect methods with new equipment
- Future RIB facilities and upgrades will help!

THANKS!

A
«=?¥
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