

"TOF-Bp Mass Measurements of Neutron-rich Nuclei at the NSCL"

Sebastian George Frontiers Meeting Lake Geneva 22.10.2010

Pioneering Experiment of Neutron-rich Isotopes between N=32 to N=40

Developments and Future Experiments

Importance of Atomic Masses

Measurement Techniques

Isochronus-Mass-Spectrometry

- highest precision (10⁻⁹)
- required lifetime of a few ten milliseconds
- measurement time of a few hundred milliseconds

Time-of-flight measurement

- many different isotopes simultaneously
- > measurement time in below 1 μs
- Precision of 10⁻⁶ (sufficient for nuclear structure studies and astrophysics)

$$B\rho = \frac{p}{q} = \frac{\gamma m_0}{q} \left(\frac{L}{TOF}\right)$$

NSCL:

- two coupled cyclotrons
- ➢ flight path of ≈ 58 m
- Flight time of ≈ 460 ns
- > momentum acceptance of 0.5%
- comparison with a known reference mass

- Fast PMT (Hamamatsu R4998)
- small (1.5 x 2.54 cm) and fast scintillator (BC418)
- Iow attenuation cables (Belden 7810a)
- \geq performance: σ_{time} =27 ps

- different isotopes have different momentum distributions
- material in the beamline (scintillator for time-of-flight) changes energy (depending on the charge of the ions

measure the position of each particle

New MCP detector

- Ist experiment: circular MCPs with a diameter of 5 cm
- > new experiment: 8 cm * 10 cm rectangular MCPs
 - larger acceptance
- stronger permanent magnets

First Results

- primary beam: ⁸⁶Kr (100 MeV/u)
- 47 mg/cm² and 94 mg/cm² Be targets
- 6 nuclides measured for the first time
- 16 mass values ranging from ⁵³Sc to ⁷⁷Cu improved
- best mass uncertainty achieved: 240 keV

Calibration isotopes (known mass)mass measured in this experiment

Mass excess / keV

Isotope	This work	Literature	Mean
⁵³ Sc	-38150 (240)	-37630 (250#)	-37930 (180)
⁵⁴ Sc	-33590 (330)	-34190 (370)	-33860 (250)
⁵⁵ Sc	-30320 (540)	-29620 (750)	-30080 (440)
⁵⁷ Ti	-33820 (310)	-33530 (470)	-33730 (260)
⁵⁸ Ti	-29740 (800)		-29740 (800)
⁶⁰ V	-33030 (350)	-32600 (470)	-32870 (280)
⁶¹ V	-30910 (940)		-30910 (940)
⁶³ Cr	-35270 (600)		-35270 (600)
⁶⁵ Mn	-40730 (280)	-40710 (560)	-40720 (250)
⁶⁶ Mn	-36890 (770)		-36880 (770)
⁶⁷ Fe	-45880 (220)	-45740 (370)	-45840 (190)
⁶⁸ Fe	-44010 (390)	-43130 (750)	-43830 (340)
⁷⁰ Co	-46720 (250)	-45640 (840)	-46640 (240)
⁷¹ Co	-44530 (510)	-43870 (840)	-44360 (430)
⁷⁴ Ni	-49390 (1040)		-49390 (1040)
⁷⁷ Cu	-46940 (1390)		-46940 (1390)

Upcoming Experiment

- > primary beam: ⁷⁶Ge (130 MeV/u)
- 446 mg/cm² and 610 mg/cm² Be targets
- aiming for more than 30 nuclides ranging from ⁴⁶S to ⁷²Co
- 6 days of beamtime
- increased acceptance by use of larger MCP detector

55V 6.54 S β-: 100.00%	56V 216 MS β-: 100.00%	57V 0.35 S β-: 100.00% β-n: 0.04%	58V 185 MS β-: 100.00%	59⊽ 75 MS β-: 100.00%	60Ψ 68 MS β-	61V 47 MS β-	62∀ ≻150 NS β-
54Ti 1.5 S β-: 100.00%	55Ti 1.3 S β-: 100.00%	56Ti 200 MS β-: 100.00% β-n	57Ti 60 MS β-: 100.00% β-n	58Ti 59 MS β-: 100.00%	59Tì 30 MS β-	60Ti 22 MS β-	61Ti >300 NS β-
53Sc >3S β-: 100.00% β-n	54Sc 0.36 S β-: 100.00%	55Sc 105 MS β-: 100.00% β-n	56Sc 60 MS β-n β-	57Sc 13 MS β-: 100.00%	58Sc 12 MS β-: 100.00%	59Sc 10 MS β- β-n	60Sc 3 MS β-
52Ca 4.6 S β-: 100.00% β-n≤ 2.00%	53Ca 90 MS β-: 100.00% β-n > 30.00%	54Ca ≻300 NS β-: 100.00%	55Ca 30 MS β-	56Ca 10 MS β-	57Ca 5MS β-n β-		

huclear structure around 62Ti shell closure at N=34?

Isotope	N Events	Isotope	N Events
⁴⁵ S	1500	⁵⁹ Sc	100
⁴⁶ S	100	⁵⁹ Ti	51300
⁴⁷ Cl	7700	⁶⁰ Ti	9400
⁴⁸ Cl	300	⁶¹ Ti	400
⁴⁸ Ar	138600	⁶¹ V	247300
⁴⁹ Ar	9500	⁶² V	39300
⁵⁰ Ar	900	⁶³ V	4000
⁵¹ K	72300	⁶⁴ V	200
⁵² K	1300	⁶⁴ Cr	76200
⁵³ K	200	⁶⁵ Cr	6300
⁵² Ca	284200	⁶⁶ Cr	800
⁵³ Ca	31500	⁶⁶ Mn	44800
⁵⁴ Ca	7100	⁶⁷ Mn	44100
⁵⁵ Ca	200	⁶⁸ Mn	1900
⁵⁶ Ca	100	⁶⁹ Mn	200
⁵⁶ Sc	50400	⁶⁹ Fe	16500
⁵⁷ Sc	5800	⁷⁰ Fe	13600
⁵⁸ Sc	900	⁷² Co	880

... for your attention

and

Thanks to

Milan Matos, Alfredo Estrade, Hendrik Schatz

Mathew A. Amthor, Daniel Bazin,

Ana D. Becerril, Marcelo Del Santo, Thom J. Elliot, Alexandra Gade, Daniel Galaviz, Giuseppe Lorusso, Jorge Pereira, Mauricio Portillo, Andrew Rogers, Dan Shapira, Edward Smith, Andreas Stolz, and Mark S. Wallace

Experimental Data

- < 1 μs flight time</p>
- primary beam ⁸⁶Kr 100 MeV/u
- 47mg/cm2 and 94 mg/cm2 Be targets
- momentum acceptance of 0.5%

Mass Determination

$$B\rho = \frac{\gamma p}{q} = \frac{\gamma m_0}{q} \left(\frac{L}{TOF}\right)$$

- desired precision: 10⁻⁶
- knowledge of the 58 m flight path with a precision of 58 μm

comparison with a known reference mass

<u>but</u>

- momentum acceptance of 0.5%
- different isotopes have different momentum distributions
- material in the beamline (scintillator for time-of-flight) changes energy depending on the charge of the ions
- measure the position of each particle

TOF Measurement

primary beam: ⁸⁶Kr 100 MeV/u

targets: 47mg/cm² Be; 94 mg/cm² Be

Timing scintillators

fast PMT

- small (1.5 x 2.54 cm) and fast scintillator
- low attenuation cables
- timing with respect to distributed clock

Position Measurement

magnetic field of 0.2 T between MCP and foil
position resolution ≈ 0.4 mm

NIVERSITY

X_{MCP1} [cm]

Results

Mass excess in keV

	This work	Literature	Mean
^{53}Sc	-38150 (240)	-37630 (280#)	-37930(180)
^{54}Sc	-33590 (330)	-34190 (370)	-33860 (250)
^{55}Sc	-30320 (540)	-29620 (750)	-30080 (440)
57 Ti	-33820 (310)	-33530(470)	-33730 (260)
58 Ti	-29740 (800)		-29740 (800)
^{60}V	-33030 (350)	-32600(470)	-32870(280)
^{61}V	-30910 (940)		-30910 (940)
^{63}Cr	-35270 (600)		-35270 (600)
^{65}Mn	-40730 (280)	-40710(560)	-40720 (250)
^{66}Mn	-36890 (770)		-36880 (770)
67 Fe	-45880 (220)	-45740(370)	-45840 (190)
$^{68}\mathrm{Fe}$	-44010 (390)	-43130 (750)	-43830 (340)
70 Co	-46720 (250)	-45640 (840)	-46640 (240)
^{71}Co	-44530 (510)	-43870 (840)	-44360 (430)
74 Ni	-49390 (1040)		-49390 (1040)
^{77}Cu	-46940 (1390)		-46940 (1390)

Calibration isotopes (known mass)mass measured in this experiment

Accreting Neutron Stars

Artist rendition of an accreting neutron star.

Nuclear masses as key parameters in astrophysics

Time-of-flight technique

First results from the NSCL TOF project

Impacts on accreting neutron stars

... for your attention

and

Thanks to

Milan Matos, Alfredo Estrade (Phd), Hendrik Schatz

Mathew A. Amthor, Daniel Bazin, Ana D. Becerril, Thom J. Elliot, Alexandra Gade, Daniel Galaviz, Giuseppe Lorusso, Jorge Pereira, Mauricio Portillo, Andrew Rogers, Dan Shapira, Edward Smith, Andreas Stolz, and Mark S. Wallace

Direct Measurements

<u>Penning trap</u>

- highest precision (10⁻⁹)
 required lifetime of a few milliseconds
- measurement time of a few hundred milliseconds

Storage ring

Isochronus-Mass-Spectrometry

- many different isotopes
- lower precision (a few 10⁻⁸) than Penning trap

Importance of Atomic Masses

*

JINA

george@nscl.msu.edu

NŚĆ

Mass Measurements of Radioactive Isotopes

<u>AICHIGAN STAT</u>

