⁵⁶Ni Production in Collisions of two White Dwarfs

Themis Athanassiadou

Wendy Hawley Cody Raskin Mark Richardson Evan Scannapieco Frank Timmes

SESE ASU

22 October 2010

- ∢ 🗇 🕨 ∢ 🖹

< ≣ >

SNIa : Standard Paradigm

Illustration of Accreting White Dwarf

Credit: (Illustration) NASA/CXC/M.Weiss

Chandrasekhar mass-limited WD accretes mass from binary companion

<ロ> <同> <同> < 同> < 同>< < 同>< < 同>< < 同>< < 同> < (同) < (同) < (同) < (同) < (同) < (п) < (п) < (n) < (n)

- SNIa powered by ${}^{56}\text{Ni} \rightarrow {}^{56}\text{Co} \rightarrow {}^{56}\text{Fe}$
- Typical SNIa produce 0.5-0.9 M_☉ of ⁵⁶Ni

Atypical SNIa

- Overluminous SNIa: 1.2-1.7 *M*_☉ ⁵⁶Ni → SN2003fg, SN2006gz, SN2007if, SN2009dc
- Sub-luminous SNIa: \sim 0.1 M_{\odot} ⁵⁶Ni \rightarrow SN1991bg, SN2005dm, SN2005bl

イロト イヨト イヨト イヨト

Atypical SNIa

- Overluminous SNIa: 1.2-1.7 M_{\odot} ⁵⁶Ni \rightarrow SN2003fg, SN2006gz, SN2007if, SN2009dc
- Sub-luminous SNIa: \sim 0.1 M_{\odot} ⁵⁶Ni \rightarrow SN1991bg, SN2005dm, SN2005bl

Proposal

We investigate a double-degenerate (white dwarf collision) scenario as a possible progenitor system for these atypical SNIa

Movie 1 Movie 2

Simulations-Numerical Methods

- CODE: FLASH (Fryxell et al 2000)
- 3D Eulerian hydro
- Grid: Adaptive mesh refinement
- Gravity solver: Poisson multigrid

< 1[™] >

• Nuclear burner: 13-isotope alpha-chain network

Movie 1 Movie 2

Simulations-Setup and Initial Conditions

• 3D Cartesian box (L=8 WD radii)

- Composition:
 50 %Carbon 50 % Oxygen
- Impact parameters:
 b = 0, 1, 2 WD radii
- Masses: 0.5 0.9 M_{\odot}

Movie 1 Movie 2

FLASH movie: 0.6+0.6 head on collision

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - のへの

Movie 1 Movie 2

0.6+0.9 head on collision

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● ● ●

Results and Future Work

- Preliminary results indicate 0.0-0.9 M_{\odot} $^{56}\mathrm{Ni.}$
- Ni yields are consistently lower than those obtained from SNSPH for same initial conditions
- Modify nuclear burner in FLASH to handle higher WD masses (> 1 M_{\odot})

個 と く ヨ と く ヨ と

- Investigate WD mergers
- Obtain theoretical lightcurves based on our simulations

Results and Future Work

- Preliminary results indicate 0.0-0.9 M_{\odot} $^{56}\mathrm{Ni.}$
- Ni yields are consistently lower than those obtained from SNSPH for same initial conditions
- Modify nuclear burner in FLASH to handle higher WD masses (> 1 M_{\odot})
- Investigate WD mergers
- Obtain theoretical lightcurves based on our simulations

Take home message:

The double-degenerate scenario appears to be promising as a candidate of sub- and overluminous SNIa. This scenario can also produce nickel in the same range as typical SNIa!

Detonation Structure: Comparison with SNSPH

