

Identification of isomers in the ¹⁰⁰Sn region

11111

Ana Becerril Reyes

National Superconducting Cyclotron Laboratory Joint Institute for Nuclear Astrophysics Michigan State University

and a statement

October 22, 2010

JINA FRONTIERS WORKSHOP

Lake Geneva, WI

Type I X-ray bursts and the rp-process

Predicted isomers

⁹⁶Cd: A beta-decaying 16⁺ spin-gap isomer with T_{1/2} ~ 0.5s has been predicted at an excitation energy of about 5.3 MeV

3

and isomeric state the ones needed

ng the path, especially in waiting point nuclei, so that ground to ensure that the half-lives measured in the laboratory are tions.

K1200

cyclotron

Beam Production at NSCL

RF Fragment Separator NSCL Beta Counting Station (Mantica et al.) With SeGA Ge-detectors

• measure energy loss and time of flight

RF Fragment Separator NSCL Beta Counting Station (Mantica et al.) With SeGA Ge-detectors

- measure energy loss and time of flight
- measure arrival time and location

RF Fragment Separator NSCL Beta Counting Station (Mantica et al.) With SeGA Ge-detectors

- measure energy loss and time of flight
- measure arrival time and location
- measure decay time and energy of products

NSCL segmented Ge Array (SeGA)

PID verified by observation of γ -rays from known μ s isomers (e.g. ⁹⁰Mo, ⁹³Ru and ⁹⁶Pd) detected when the RFFS slits were open.

A number of proton-rich fragments were implanted at the experimental station, and their β -decay half-lives were determined taking into account the decay of the parent, growth and decay of the daughter and granddaughter nuclei, as well as β decay background events. The β background rate was calculated as a function of time and pixel position.

D. Bazin et al PRL 101, 252501 (2008)

⁹⁶Ag μs – isomer

are now known.

⁹⁶Cd

 $T_{1/2} = 1.03 {+0.24 \atop -0.21} s$ 40 35 We determined this β -Counts/500 ms 30 decay half-life for the first time. With it, all rp-25 process waiting points 20 15 10 5 0 2 6 8 10 4 0 Time [s]

We found no evidence of the existence of a predicted second β decaying state with a half-life of 0.5 s, but its existence cannot be ruled out.

Results

⁹⁷Cd

Two components clearly distinguished. The long-lived component corresponds to the decay of the predicted $25/2^+\beta$ -decaying isomeric state. The short-lived component corresponds to the decay of the ground state. The G.S. half-life is the one that must be used for the ⁹⁷Cd waiting point in rp-process calculations.

With our half-life measurements, all major waiting points along the reaction path of the rp-process are now known.

The new data indicate that the X-ray bursts are not the main source of the ⁹⁶Ru observed in the solar system.

Overproduction factors for X-ray burst ashes obtained with new data from this work. The half-life and βp branching ratio of ⁹⁷Cd are varied within previous error bars to explore possible impact on final abundances.

Acknowledgments

D. Bazin¹, G. Lorusso^{1,2,3}, F. Montes^{1,2}, P. Mantica^{1,4}, H. Schatz^{1,2,3}, A.M. Amthor^{1,2,3}, T. Baumann¹, J. Berryman^{1,4}, H. Crawford^{1,4},
A. Estrade^{1,2,3}, A. Gade^{1,3}, T. Ginter¹, C. Guess^{1,2,3}, M. Hausmann¹, G. W. Hitt^{1,2,3}, M. Matos^{1,2}, R. Meharchand^{1,2,3}, K. Minamisono¹, J. Pereira^{1,2}, G. Perdikakis¹, M. Portillo¹, K. Smith^{1,2,3}, J. Stoker^{1,4}, R. Zegers^{1,2,3}

¹National Superconducting Cyclotron Laboratory ²Joint Institute for Nuclear Astrophysics ³Department of Physics and Astronomy ⁴Department of Chemistry Michigan State University, East Lansing, MI 48824.

Painting by H. Bertulani At NSCL's Atrium

Backup slides

⁹⁶Cd:

- β -decay half-life measured: $1.03^{+0.24}_{-0.21}s$
- •No indication of the predicted second β -decaying component, but its existence cannot be ruled out.

•The measured half-life of ⁹⁶Cd seems to eliminate the possibility that rp-process could be the main responsible for the origin of ⁹⁶Ru.

⁹⁸In

• Indication of a long-lived isomeric component and a short half-life attributed to the super-allowed Fermi decay from a 0⁺ ground state. Combined with the previous measurements these half-lives are: 44_{-12}^{+13} ms and $0.92_{-0.17}^{+0.27}$ s for the short and long components respectively.

N=126

• The precision of our measurement of the ¹⁰⁰Sn half-life is compatible with previous measurement. Improved average: $0.86^{+0.37}_{-0.20}$ s

96Ag⁷⁼²

• Improved statistics allow for identification of 5 new gamma lines de-exciting the μ s isomer previously observed. Isomeric half-life 2x longer than reported in previous work. Level scheme suggested!

Results

⁹⁸In

Counts/500 ms Time [s] **Indication of two** $T_{1/2} = 47(13) \text{ ms}$ GS components in decay spectrum

 $T_{1/2} = 0.66(0.40)$ s Isomer

⁹⁶Ag μs – isomer

2460

96Ag

Fragment yields at exit of A1900 Fragment Separator

Huge contamination from low momentum tails of more abundant higher rigidity fragments.

 \Rightarrow Need additional purification of secondary beam!

The RF kicker

RF electric field: Maximum peak voltage of 100 kV. Range of frequencies: 17MHz to 27 MHz. Vertical deflection given by

$$\delta y = \beta_c \ \delta y'$$

$$\delta y' = c_1 \frac{V}{B\rho f} \left| Sin\left(c_2 \frac{f}{\beta}\right) \right| Cos\phi$$

 δ y' is in mrad β=v/c reduced velocity Bρ [T·m] magnetic rigidity f [MHz] frequency V [kV] voltage φ average phase of the beam c₁=6.37 c₂=0.0157 β_c=3m