^{68}Se rp-process waiting point and the ^{69}Kr β -delayed proton emission experiment

Marcelo Del Santo

Joint Institute for Nuclear Astrophysics National Superconducting Cyclotron Laboratory

Frontiers 2010 Workshop on Nuclear Astrophysics October 21-23,2010 Abbey Resort, Lake Geneva WI

Outline

- X-ray bursts and rp-process
- Waiting point nuclei in the rp-process
- Proton separation energy of ⁶⁹Br
- 69 Kr β -delayed proton emission experiment

X-ray bursts and rp-process scenario

Neutron stars:

- 1.4 M_o, 10 km radius
- average density: ~ 10¹⁴ g/cm³
- strong gravitational field

H, He rich material Accretion Disk

X ray emission: persistent flux

Thermonuclear explosion

Temperature sensitive fusion reactions X-ray Burst → rp-process

Typical systems:

- accretion rate 10⁻⁸/10⁻¹⁰ M_o/yr (0.5-50 kg/s/cm²)
- orbital periods 0.01-100 days
- orbital separations 0.001-1 AU's

Binary System

Donor Star ("normal" star, white dwarf)

Neutron Star

X-Ray Burst characteristics and classification

M. Del Santo

Type I:

- Nuclear energy (rp-process)
- Energy proportional to preceding inactivity period
- Fast rise: 1-2s
- Exponential decay profile

Typical X-ray bursts:

- duration: 10s 100s
- recurrence: hours-days
- regular or irregular
- energy: 10³⁶-10³⁸ erg/s (stars 10³³-10³⁵ erg/s)

To interpret quantitatively:

Need precise nuclear data to make full use of high quality observational data

- masses (proton separation energies)
- β -decay rates
- reaction rates (p-capture, α ,p)

⁶⁸Se Waiting point

Effective life time of the ⁶⁸Se waiting point

Saha equation:

decay rate:

$$\lambda_{\text{eff}} = \lambda_{\beta} + Y_{\text{p}}^2 \rho^2 N_A^2 \left(\frac{2\pi\hbar^2}{kT}\right)^{3/2} \frac{G_2(T)}{G_1(T)} \exp\left(\frac{Q_1}{kT}\right) \langle \sigma, v \rangle_{(\text{p},\gamma)_2}$$

. . . . 2/2

68
Se + p \rightarrow 69 Br

$$Q_1 = S_p$$

⁶⁹Br mass - Coulomb displacement

non-observation of ⁶⁹Br in projectile fragmentation experiments [Pfaff1996]

⁶⁹Br T_{1/2} < 24 ns \rightarrow Sp < -500 keV

M. Del Santo

⁶⁴Ge

⁶⁸Se

The Joint Institute for Nuclear Astrophysics

M. Del Santo

Sensitivity studies of rp-process calculations

0.5 - 86%

0.0 - 26%

Influence of the proton capture Q-values on Type I X-ray burst models

30 %

0.5 %

[Brown et al. PRC (2002)]

-Coulomb displacement energy -exp. masses from the neutron rich side

> - Large errors in 64Ge and 68Se masses provide the dominant uncertainty in the rp-process calculations.

- Improve underlying nuclear physics

⁷²Kr 0.0 % 0.0 - 8% Branching for proton captures

Experiment carried out at NSCL (May 2010)

How unbound is ⁶⁹Br? What's the proton separation energy ?

 β delayed proton emission of ⁶⁹Kr

$$\overset{69}{\text{Kr}} \longrightarrow e^+ + \nu_e + \overset{69}{\text{Br}} \overset{68}{\text{Se}} + p$$

$^{69}\text{Kr}\ \beta\text{-delayed}\ proton\ emission$

$^{69}\text{Kr}\ \beta\text{-delayed}\ proton\ emission$

to better constrain the proton separation energy

Beam production at NSCL

M. Del Santo

The Radio Frequency Fragment Separator at NSCL

RF electric field: Frequency range: 17MHz to 27 MHz Maximum peak voltage of 100 kV		69Kr (pps)	Contaminants (pps)	Purity (%)
	Without RFFS	0.02	4500	0.00044
Electrodes parallel deflecting plates:	With RFFS	0.02	70	0.028
1.5m long, scm gap			~ (factor 60

Beta Counting System - BCS

Identify each fragment and correlate with their subsequent β or βp decay

M. Del Santo

BCS and SeGA

<u>BCS:</u> PIN detectors + 3 DSSDs Resolution of 100 keV at 8 MeV

<u>SeGA:</u> 16 high purity segmented Ge detectors surrounding BCS for for gamma detection

Total efficiency 7% at 1MeV

Particle Identification (PID)

Particle ID 3500 ∆E PIN2 (a.u.) **10**⁴ ⁶⁹Kr ⁶⁷Se 3000 ⁶⁶As 10³ 2500 10² 2000 10 1500 1000<mark>___</mark> 1 2850 2860 2870 2880 2890 TOF (a.u.)

• Implants on DSSD

⁶⁶As and ⁶⁷Se: β

⁶⁹Kr: 100% βp

Next step:

Look for correlated decays in the same pixel of the implant in the DSSD

How correlation works: Implant or decay event

- only a signal in DSSD
- look back for implants:
 - a signal in PIN1,2,3 and in DSSD
 - in the same pixel (or in a small box)

dt

- particle ID: gate on ⁶⁹Kr

Event Time Line (ms)

⁶⁹Kr decay curve and half life

β delayed proton energy spectra

Summary

- Waiting point nuclei slow down the energy generation and can explain some observed bursts with long duration
- Effective life time of the ⁶⁸Se depends on the S_p
- Determines the shape and duration of X-ray Bursts light curves
- Experiment to constrain the S_p of ⁶⁹Br
- β-decay branches to low energy levels

Collaboration: Hendrik Schatz, Paul Mantica, Marcelo Del Santo, Heather Crawford, Geoff Grinyer, Jorge Pereira, Fernando Montes, Giuseppe Lorusso, Ana Becerril, Zach Meisel, Alfredo Estrade, Karl Smith, Richard Cyburt

Beta Decay Campaign @ NSCL MAR-APR 2010

- B-delayed proton decay of the proton rich 39Ti:
 - improve constraints on the energy window for 2p emission
 - prediction of direct 2p candidates below 45Fe
- Charged particle decay of proton rich 22,23 Si isotopes:
 - ground state two proton (2p) emitter candidate
- characterize the β -decay and subsequent charged particle emission (\beta2p, \beta3p, $\beta\alpha,\,\beta\alpha p$)
- Beta delayed proton emission of 69Kr and the rp-process in Xray bursts:
 - identify branches of beta delay proton-emission
 - better constrain the proton separation energy of 69Br

Bursts characteristics

Typical X-ray bursts:

- duration: 10s 100s
- recurrence: hours-days
- regular or irregular
- energy: 10³⁶-10³⁸ erg/s

(stars 10³³-10³⁵ erg/s)

Very bright and frequent phenomenon !

Today:

~230 X-ray binaries known ~160 LMXB's (low mass x-ray binary) ~70 burst sources

X-Ray Burst profile and classification

<u>Type I:</u>

- Nuclear energy (rp-process)
- Energy proportional to preceding inactivity period
- Fast rise: 1-2s
- Exponential decay profile

<u>Type II:</u>

- Gravitational energy
- Energy proportional to following inactivity period

Persistent flux gravitational energy

To interpret type I X-ray bursts:

- masses (proton separation energies)
- $\beta\text{-decay}$ rates
- reaction rates (p-capture, α ,p)

M. Del Santo

⁶⁸Se(p,γ)⁶⁹Br Q-value

	Sp (keV)	Error (keV)	
CPT [Clark et al. 2004]	-809	130	Penning trap, AW extrap. ⁶⁹ Br mass
[Wöhr et al. 2004]	-766	350	eta-decay end point, AW extrap. ⁶⁹ Br mass