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R-MATRIX THEORY* 
 
By Erich Vogt, TRIUMF, Vancouver, Canada 
 
 
*These notes are for five lectures, which the author gave, October 4-8, 2004, at the R-
Matrix School of the Joint Institute for Nuclear Astrophysics (JINA) at Notre Dame 
University, South Bend, Indiana. The five sections of the notes correspond to the five 
given lectures. The notes are not a review article but are intended to be helpful to the 
participants of the school and to serve as an introduction to the R-Matrix programs 
prepared for the School participants by Professor Richard Azuma. These notes are 
dedicated to Fred Barker who, for half a century, has been more consistent than anyone 
else in championing the R-Matrix theory.    
 

1 INTRODUCTION 

1.1 General Introduction 
This is again an interesting time for the theory of low-energy nuclear reactions. The new 
facilities for nuclear astrophysics, including the new radioactive beam facilities, now 
make it possible to pursue experiments for many of the processes involved in stellar 
evolution and nuclear astrophysics. These studies are central now to nuclear physics and 
many of the processes are resonance reactions. The analysis of the data then returns us to 
an era, almost half a century ago, when nuclear reactions were first studied and analyzed 
at a time when nuclear physics dominated physics and, indeed, much of science. It is then 
an interesting turn around in our field, which brings us here to examine, with hindsight, 
many of the critical issues, which were emerging fifty years ago. As background material 
each of the participants of this school have been given three quite ancient papers: the 
encyclopaedic review paper of Lane and Thomas1 (referred to as Ref. A in the text); two 
review papers by the present author2,3 (referred to, respectively, as Ref. B and Ref. C in 
the text).  
 
As we shall discuss, the R-matrix theory of Wigner and his collaborators turns out to be 
the most physical and appropriate, among the various alternative frameworks, for the 
analysis of resonance reactions. These frameworks evolved almost as soon as nuclear 
physics began. Shortly after the discovery by Chadwick (1932) of the neutron, Fermi and 
his collaborators in Rome studied the cross sections for neutron bombardment of many 
elements. They found many resonances, often spaced only a few eV apart, compared to 
the spacing of many MeV demanded by the mass of the neutron and the known size of 
nuclei, for single-particle neutron levels in a potential well of nuclear size. The plethora 
of resonances immediately led to a new concept; the compound nucleus, articulately 
stated by Bohr. In this picture a neutron entering a nucleus immediately excites the many 
degrees of freedom of the many-nucleon system and is resonantly absorbed. In essence, 
the nucleus is “black” for the neutron (“black” means that at the nuclear surface the wave 
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function of the neutron is given by an incoming wave) and this black-nucleus picture was 
well described in the famous 1937 review articles on nuclear physics by Bethe4. 
The verdict was in:  the nucleus was black and no single-particle motion such as that of 
the nuclear shell model seemed possible. There had been initial stirrings, in the 1930’s, of 
the single-particle model but the neutron evidence and the great strength and short range 
of the nuclear force between nucleons set back any serious consideration of the shell 
model for almost two decades until new evidence led to its rebirth.   
 
The immediate problem, in the mid-1930’s, was to describe the closely spaced 
resonances observed for neutrons and also other beams. The known physics of the 
nuclear system gave clues about how to proceed. The nucleus was known to have a 
reasonably well defined radius – deduced from saturation and other properties – and 
inside the two-body nuclear forces were assumed to thoroughly mix things until, after 
some length of time (compared to the transit time of a nucleon across the nucleus) 
something emerged that was energetically permissible. Such a system was not unlike an 
electromagnetic cavity, driven by wave-guides connected to it. The early frameworks 
constructed for the description of resonance reactions were based on such analogies. 
 
The first published framework was that of Kapur and Peierls5. They viewed the nucleus 
as a complicated box in the configuration space of all the nucleons and therefore they 
added boundary condition numbers at the nuclear surface which corresponded to purely 
incoming waves. As we shall see below, this framework has many beguiling features but 
its usefulness appears to be limited by the fact that its boundary conditions are complex 
numbers and also strongly energy dependent.   
 
The R-matrix framework came next (see references A or B for a complete list of the early 
papers). Eugene Wigner who proposed it had already provided, with Gregory Breit6, the 
famous Breit-Wigner formula, which needed a better foundation. The R-matrix 
formulation provided that foundation. It was begun in 1941, by Wigner but only fully 
worked out immediately after WWII by Wigner and Eisenbud and others. The R-matrix 
framework also had its origins in the earlier work pertaining to electromagnetic cavities. 
It is then amusing that very recently the R-matrix formalism has been applied by Richter 
and his colleagues7 to the description of their measurements of the properties of 
electromagnetic wave guides. This new work was seemingly unaware of its earlier 
antecedents.  
 
Central to each of these frameworks is the division of the configuration space of the 
problem into an “internal” region, corresponding to the compound nucleus, and an 
“external” region, corresponding to the reaction alternatives, or channels, possible to 
reach the compound nucleus or emerge from it. This division of space is made by a 
choice of the boundary of the compound nucleus: a nuclear radius is chosen for each 
reaction alternative. The resonances displayed in the cross sections are those of the 
compound nucleus and are given by boundary condition numbers chosen at each radius. 
Such a choice yields a complete set of wave functions, or resonances, for the compound 
nucleus through the construction of the appropriate boundary value problem. The channel 
radii and the corresponding boundary condition numbers are auxiliary quantities which 
are not artificial adjuncts to the framework – as has often been falsely alleged – but may 
be subject to good physics, as we shall see below. The external region provides us with 



the paraphernalia – having nothing to do with the underlying nuclear physics – of 
scattering theory, such as the collision matrix or phase shifts or penetration factors, etc. 
The internal region provides the parameters – level energies, level widths and reduced 
widths (or spectroscopic factors) – pertaining to the nucleus. 
 
The physical reason why such reaction frameworks – with their division of configuration 
space into external and internal regions – work at all is that the atomic nucleus has a 
reasonably well defined radius which, in turn, arises from the short range of the nuclear 
forces. Similarly, the reason why the R-matrix framework has emerged as the best for the 
description of resonance processes is that the nuclear or internal parameters that it yields 
are strongly tied to the physics of nuclear spectroscopy.   

1.2 A Heuristic Model – S-wave Scattering of a Neutron by a Square-
Well Potential 

Here we follow, especially for the “internal bits”, the treatment of Section II of Ref. C. 
With this example we encounter all of the quantities of the formal reaction theory 
including those of the R-matrix.   
 
The radial part of the Schroedinger equation for this problem may be written as: 

 ( ) 2 22
0- d φ/dr   +  V φ  =  Eφ/ 2mh  (1) 

where V = -V0 for r ≤ a, and V0 = 0 for r > a. To be somewhat realistic, relative to the 
known mean free field for neutrons, we choose the square-well depth to be about V0 = 
-50 MeV and the square-well radius to be about a = 1.25 A1/3 fm. The square-well is 
spinless and so we can ignore spin in this heuristic problem.   

1.2.1 External Bits 
To define and describe the “external bits” (that is, those pieces of the problem which have 
nothing to do with the potential) of this heuristic problem we follow the treatment of any 
introductory text for quantum mechanics.  We envisage a neutron beam produced by an 
appropriate source and collimators, incident as a plane wave on a distant scatterer with 
the scattered waves being observed outside the beam and the scatterer. In all generality 
we can then write the external wave function as the sum of an incident plane wave, eikz 
plus a scattered wave, as follows: 

  (2) ikz ikr(r, θ, φ) = A [e  + (1/r) f(θ,φ)e ]Ψ

where k (= mv/h ) is the wave number of the neutron.  We next insert the expansion of 
the plane wave into partial waves of given angular momentum, l, (this expansion is not 
without mathematical interest because the plane wave is not square integrable and 
therefore care must be taken in the expansion):  

  (3) ikz ikrcos
0e  = e   =   (2  + 1) i  j  (kr) P  (cos θ)θ ∞

−Σ l
l l ll

The scattering cross section is defined to be: 
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 ( ) 2 (θ,φ)  =  f θ,φσ  (4) 

We next note that the incoming plane wave, (3), is a sum of incoming and outgoing 
spherical waves, for example, for l= 0: 

 -ikr ikr ½
oj  (kr)  =  (1/kr) sin kr = (2i/kr) [e - e ]  (2i/kr) (4πν)  [  - ]≡ Ι Ο  (5) 

where I [≡ (4πv)-1/2 e–ikr] and O [≡ (4πv)-1/2 eikr] are, respectively, incoming and outgoing 
waves for l=0, both normalized to unit flux. 
 
We next define the phase shift, δℓ, and the collision function, Uℓ, both of which relate to 
the external wave function at large distance. Asymptotically the radial solution for any 
partial wave, l, is a sine function which is phase shifted. That is, 

 radial solution (r )  A  sin (kr + )δ→ ∞ ≈ l l  (6) 

which, for l = 0  (again dropping the 0 subscript) allows us to write the external wave 
function as:     

  (7) 2iφ  = [  - e  ] = [  - U ]              r  > aδΙ Ο Ι Ο

which defines the collision function (U ≡ exp(2iδ) ), which may be used as an alternative 
to the phase shift to parameterize the asymptotic wave function. The corresponding cross 
section is  

 22 2 2σ = (π/k ) sin  δ = (π/k ) 1 - U  

1/2

 (8) 

It is the cross section σ − and hence δ or U – which is measured. To relate them to the 
scattering potential we first need to look at the “internal bits”.   

1.2.2 Internal Bits 
The “internal”  (r < a) solution for the radial Eqn. (1), of our heuristic problem is 

  (9) 2
0φ (r) = A sin Kr,      where K = [(2m/ )(E + V )]h

We match the logarithmic derivative of this internal wave function with that of the 
external wave function, (5): 

 externalinternal(φ  / φ)    ,  at  r = a   = (φ  / φ) ′ ′  (10) 

where the prime indicates the dimensionless derivative, rd/dr. We then find at once 

-ika 2i ika -ika 2i ikaKa cos (Ka) / sin (Ka) = ika [-e  - e e ] / [e  - e  e ]δ δ  

which can be solved to yield: 

  (11) -1= tan  [ (ka / Ka) tan Ka] - ka  δ
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This completely solves the heuristic problem, if we insert the phase shift into (8), but we 
shall solve it in another way immediately to achieve its heuristic value. We note, 
however, that the cross section, (8), has a maximum whenever δ = (n + ½) π. Does this 
correspond to resonance? Surprisingly, the answer is no! We shall then enquire about the 
definition of resonance in this heuristic problem.    

1.2.3 The Square-Well as a Resonant Cavity 
To exhibit the resonances of the square-well we need to look at what happens inside the 
well. In the expression for the phase shift, Eqn. (11), the final term, -ka, is a hard sphere 
scattering phase shift, which pertains to the impact of the change in potential at the 
nuclear radius but has nothing to do with what happens inside. It depends on k, not on K. 
Instead, the resonances inside are given by that part of the phase shift which pertains to 
the wave number, K, inside. This part is (1/Ka) tan Ka. The expansion of this part in 
terms of resonances needs a definition of resonance and we do this using the radial wave 
equation inside to which we add an appropriate boundary condition at the nuclear radius 
to achieve a resonance or stationary state. This is the essence of the R-matrix theory. 
 
We get standing waves, Xλ, with the radial equation, 

 2 2 2-(  / 2m) d X  / dr  + V X  = E  Xλ λ λh λ  (12) 

to which we add the boundary condition, at r = a
                       

  r=aa (d X  / dr)  = b X  (a)λ λ

λ

 (13) 

Where b is a real number, which we choose to be zero for this case – a choice that the 
physics will justify. We then have           

  (14) 1/2X  = (2 / a)  sin (K  r) λ

and 

 K  = (  + ½ )  / aλ λ π  (15) 

Figure 1 shows the s-wave resonances for a typical nuclear square-well. 
 
Because this is a Hermitian eigenvalue problem the Xλ form a complete set of states in 
terms of which we can expand any function, in particular, the internal wave function, 
φ(r).   

 φ (r) =  C  X  (r)λ λ λΣ  (16) 
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Fig. 1. The first six standing waves of the square well (A = 155) constructed with the natural boundary 
condition number for s-wave neutrons (b = 0). 

with  

  (17) 
a

o
C      =    X *(r) φ (r) dr λ λ∫

A straightforward application of Green’s theorem then yields the logarithmic derivative, r 
φ′ / φ, of the internal function evaluated at r = a  –  it was this logarithmic derivative 
which we used in constructing the phase shift  –  as a Fourier series with the stationary 
states, Xλ. We multiply (1) by Xλ*(r) and the complex conjugate of (12) by φ (r), subtract 
and integrate to obtain:  

  (18) 
a2 *

r=a o
(  / 2m) [φ X  *    -    X * φ ]      =     (E - E ) φ X  dr λ λ λ λ

′ ′ ∫h

yielding                        

  (19) -1 2C  = (E  - E)  (  / 2ma) X * (a) [φ  (a) - bφ (a)]λ λ λ ′h
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In both of which, again, the prime indicates, rd / dr. Inserting Eqn. (19) into Eqn.  (16) 
yields: 

 φ (a) / φ (a)  = (1 + bR) / R′  (20) 

for the logarithmic derivative of the internal wave function, where the R-function is: 

  (21) 2R =   / (E  - E)λ λγ∑

with      

 22 2 2 2 = (  / 2ma) ,     [ = (  / ma ), if  b = 0 ]  X (a) λγ h h  (22) 

Eqn. (22) defines the reduced width, γλ
2. We remember that the logarithmic derivative of 

the internal wave function, Eqn. (9), of our problem is also given by Ka / tan Ka so that 
Eqn. (20) then yields: 

  (23) (1/Ka) tan Ka = R / (1 + bR)

which allows us at once to write the phase shift as 

  (24) -1= tan  [ka R / (1 + bR) ] - ka δ

in which the R-function is properly embedded. We shall note again, almost immediately, 
that for our problem b has the value 0. 
 
We can also, instead, solve for the collision function, U, in terms of the R-function. 
Equating the logarithmic derivative of the external wave function, Eqn. (7) with that of 
the internal wave function, Eqn. (23), yields: 

  (25) -1 -1 -2ika -1U = O  (1 - RL)  (1 - RL*) = e  (1+ bR - ikaR) (1+ bR + ikaR) Ι

which has a form that will be helpful to us later. In (25) all quantities are evaluated at the 
channel radius, a, and L is defined to be L = O′O-1 –b. 
 
The new Eqns. (24) and (25), which we have just derived, allows us to display the Breit-
Wigner formula for individual resonances. If we approximate the R-function, Eqn. (21), 
by a single term, λ, R = γλ

2 / (Eλ − Ε), and use this in the phase shift, Eqn. (24), or in the 
collision function, Eqn. (25), we obtain for the cross section, Eqn. (8). 

 
22 ikaσ = (  / k ) 2 sin ka e  -  / [(E - E + ) - i  / 2] λ λ λλπ Γ ∆ Γ  (26) 

with        

 22ka      and          bλ
λ

2γ γΓ ≡ ∆ ≡  (27) 
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The first expression in (27) is the level width and the second is the level shift (which 
vanishes here for b = 0). The factor of ka in the level width is the penetration factor, P.    
 
The square-well resonances are clearly manifested in the single-level Breit-Wigner 
formula, Eqn. (24). If we are at low neutron energy (say well below 1 MeV so that ka is 
small) and far from resonance, that is, if Eλ - E is large, then the scattering term of 
Eqn. (24) dominates and the cross section is equal to πa2, which is just the geometric 
cross section of the well. We would expect such a cross section because of the abrupt 
change in wavelength at r = a, even though we are dealing with a potential well rather 
than a hard sphere. Apart from the phenomenon of resonance, the external wave function 
at low energy does not distinguish between a hard sphere and a square-well. On the other 
hand if we are close to resonance then the second term of the amplitude in Eqn. (24) 
dominates. The cross section then exhibits the square-well resonances.   
 
However, for s-waves the hard sphere phase shift and, indeed, the penetration factor, P, 
both have very rapid energy dependence so that the cross section as a function of the 
neutron energy, for a specific atomic weight, A, does not easily exhibit the natural 
square-well resonances. To exhibit them properly we choose, on Fig. 2, the artifice of 
plotting the neutron cross section at a fixed neutron energy (50 keV), as a function of the 
square-well radius (or, alternatively, as a function of the atomic weight, A). All of the 
well-known features of the resonance appear and the approximation of the actual cross 
section by the Breit-Wigner formula is also shown. The figure gives the Breit-Wigner 
result for several values of the boundary condition number, b. It is found that the 
“natural” (see below) value of b, (b = 0), for this case works very well. 
 
We remark here also that the phenomenon of the energy dependence of the external 
quantities (hard sphere phase shift and penetration factors), disguising somewhat the 
resonances in the cross section, is a well-known effect. For electron scattering by atoms it 
is called the Ramsauer Effect and it is also prominent in the neutron scattering by nuclei, 
over the lowest 10 MeV, which gave rise to the nuclear optical potential (see Section 5). 



 
Fig. 2. The s-wave scattering cross sections for a nucleon by a square-well of depth 51 MeV and a radius, a 
= 1.25 A1/3 F, where A is the atomic weight. The solid line gives the exact cross section (divided by 4πa2) 
at 50 keV as a function of A.  The broken lines give the one-level approximation to the cross section near 
the 4s resonance for various values of the boundary condition number, b. The heavy broken line, 
corresponding to b = 0, merges with the solid line near the resonance.   
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2 A MORE COMPLETE EXAMPLE 

2.1 Scattering of a Spinless Particle by a Potential 
In a lecture series we can be more discursive than in a review paper. Therefore we shall 
scale the heights of the R-matrix theory using not only the base camp of the last section 
(s-wave scattering of neutrons by a square-well) but building first a second camp in 
which we add further partial waves and also the Coulomb potential and permit a general 
potential well, V(r), in the internal region, for the interaction between the particle and the 
nucleus. The interaction potential includes the centrifugal potential for each partial wave. 
This second camp then pertains to the scattering of charged spinless particles by a nuclear 
potential well. It is the “base camp” of Ref. A (Section 4 – the didactic nature of this 
section of Lane and Thomas would be better served if it did not, initially, choose the 
boundary condition number bl = 0 for all partial waves). The results of this further 
example not only bring us closer to the final heights but also are sufficiently complete to 
serve as a vehicle to discuss the relative merits of various frameworks for resonance 
reactions, including the advantages and disadvantages of R-matrix theory. 
 
We then retrace the steps, which we took in Section 1 adding the effects of partial waves 
and the Coulomb Potential. “Externally” we now have phase shifts, δℓ, and collision 
functions, Uℓ = exp (2iδℓ) for each partial wave and we have the differential cross section: 

 ( ) ( ) 22dσ / d  = (1/4k )  (1 - U )P2 1 cos θΩ Σ +l l ll  (28) 

and the integrated cross section: 

 2σ =  (dσ / d ) d  = (π / k )  (2  + 1)   1 - U∫ Ω Ω Σl ll 2  (29) 

which can be compared with (8). 
 
“Internally” we have resonant states, Xλℓ (r), for each partial wave, ℓ, resulting from the 
Schroedinger equation and an imposed boundary condition, as in the preceding section. 
  
The Schroedinger radial equation for the resonant states is identical to (12) [except for the 
inclusion of the centrifugal potential in V] for each partial wave: 

 2 2 2- (  / 2m) (d  X  / dr ) + V(r) X  = E  Xλ λ λl lh λl l

λ l

 (30) 

with the boundary condition,  

  (31) r=aa  (dX  / dr) |  = b  X  (a )λl l l l

where bℓ is the boundary condition number chosen for each partial wave and aℓ is the 
matching radius chosen for each partial wave to separate the “internal’ from the 
“external” regions. If the boundary condition numbers are real we have a proper 
Hermitian boundary value problem for the resonant states.   
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The actual internal wave function, φℓ (r), at arbitrary energy, E, satisfies the same 
Schroedinger equation and then, by straightforward application of Green’s theorem, as in 
the preceding section, we get its logarithmic derivative at the matching radius as: 

  (32) r=a(φ  / φ ) |  = (1 + b  R ) / R′
ll l l l l

λ l

where again the prime indicates the dimensionless derivative, rdφℓ / dr, and the R-
function is defined as: 

  (33) 2R  =   / (E - E)λ λ λγΣl l l

with 
         

  (34) 2 2 2= (  / 2ma ) X  (a )λγ l l lh

which corresponds to (21)  and (22) of the preceding section. If the internal potential is a 
square-well (apart from the centrifugal interaction) of radius a, then it is shown in Ref. A 
that for the natural choice of boundary condition number (see below), bℓ = aℓ ℓ, each 
reduced width is again given by γλℓ

2 = (ħ2 / ma2), the same common value we had for s-
waves.   
 
If, as before, we match the internal and external logarithmic derivatives at the matching 
radii we obtain the result for the collision function corresponding to (25), that is: 

 -1  -1U  = O  (1 - R  L )  (1 - R  L ) I∗l l l l l l l  (35) 

In which the Iℓ, Oℓ and Lℓ pertain to the incoming and outgoing wave functions of the 
external region, as before, [Lℓ ≡ Oℓ′/Oℓ - bℓ], but the angular momentum and Coulomb 
barriers in the external region have significantly altered all of these external quantities as 
we now indicate. 
 
The external radial equation now is: 

  (36) 2 2 2 2 2
1 2d φ  / dr  - [  (  + 1) / r  + (2m / ) (-E + Z  Z   / r)] φ  = 0el ll l h

This equation has regular solutions, Fℓ, which are finite at r = 0, and irregular solutions, 
Gℓ, which are not finite at r = 0. Their asymptotic behaviour at large r is: 

  F  sin [kr - η log (2kr) - (1/2)  + ]π σl l� l  (37) 

and   

 G  cos [kr - η log (2kr) - (1/2)  + ]π σl l� l  (38) 
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where again k = (mv/ħ) and the Coulomb phase shift and the Coulomb parameter are 
given by: 

  = arg [1 +  + iη] σ l l  (39) 

  (40) 2

l

1 2η = Z  Z   / hve

and now we have incoming and outgoing waves: 

  (41) I  = (G  - iF ) exp (i ω )l l l

and 
O  = (G + i F ) exp (-i ω ) l l l l  

with                               

  (42) =1ω  =  tan (η / n)n∑l
l

These yield: 

 L   (O  / O ) - b  S  - b  + i P′≡ ≡l l l l l l l

2
l

2 2′ ′

 (43) 

Thus with these definitions of the regular and irregular wave functions and their 
asymptotic behaviour we get immediately the standard definitions of penetration factor, 
Pℓ, shift functions, Sℓ, and scattering phase shifts, Ωℓ : 

  (44) 2P  = (kr) / (F  + G )l l

  (45) S  = (F  F  + G  G ) / (F  + G )l l l l l l l

and 

-1O  I  = exp (2i )Ωl l l  

with 

 ( )ω tan F / GΩ = −l l l l  (46) 

In the scattering phase shift ωℓ is the Coulomb phase shift and – tan (Fℓ / Gℓ) is the phase 
shift of a hard sphere (resulting from the division into external and internal quantities at 
the matching radius – the internal potential, V(r), doesn’t have to be a square-well but we 
assume that it vanishes in the external region and thus the abrupt change at the matching 
radius introduces square-well phase shifts).  
 
We now have all the apparatus needed to describe the resonances of all partial waves for 
the potential scattering of a spinless particle. In particular we can display the garden 
variety Breit-Wigner formula. If, for partial wave ℓ, we choose the R-function, Eqn. (33) 
to have a single resonance, λ, and we then insert this one-term R-function as well as the 
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external functions just described, into the collision function, Eqn. (35), and, in turn, use 
this collision function in the cross section formula Eqn. (29) we find:  

2 2 = (  / k )(2  + 1) | - exp (2i ) {1 + i  / [ (E  - E + ) - (i/2) ] } |λ λ λ λσ π Ω Γ ∆ Γl l l l ll  (47) 

Here we have  

 2= 2P  λ λγΓ l l l  (48) 

and   

 2= (S  - b ) λ λγ∆ l l l l  (49) 

This cross section contains all of the essential elements of resonance:  unlike the s-wave 
example of the preceding section the resonance can be made as narrow as we wish by 
choosing its energy (through choice of the potential well depth), Eλℓ, to be sufficiently far 
below the Coulomb or angular momentum barrier; it has an energy dependent level shift, 
∆λℓ, whose dependence on the choice of boundary condition number is clearly evident; it 
also has interference between potential and resonance scattering. Thus it has most of the 
elements of the real nuclear problem other than the complications of a multiplicity of 
reaction channels (under which the functions of (35) all become matrices, as we show in 
the next section) and the Clebsch-Gordanerie, which is introduced by the spins, which we 
have ignored here. These complications of the real nuclear problem are necessary but 
before introducing them we discuss the various reaction frameworks and the advantages 
and disadvantages of the R-matrix framework. For that comparison we don’t require the 
complications. 

2.2 Comparison of Reaction Frameworks 
As we said at the beginning of these lectures, the nuclear forces are short range and this 
physical fact, combined with the Pauli Principle for nucleons, leads to a nuclear mean 
field, which is quite deep and has a reasonably well-defined radius. In other words, a 
cavity not unlike acoustic or electromagnetic cavities. The earliest reaction theory 
frameworks (Kapur-Peierls and R-matrix) employed the notion of cavities and their 
physics in the nuclear context. One theory (K-matrix) did not employ this physics. We 
compare the different frameworks here and comment in more detail on the advantages 
and disadvantages of R-matrix theory. 

2.2.1 K-matrix Framework 
The papers of Rosenfeld and Humblet8 which introduced the K-matrix framework in the 
early 1960’s were instigated by some real (see R-matrix below) and imagined problems 
with R-matrix theory.  Rosenfeld thought that the channel parameters (matching radii and 
boundary condition numbers) of the R-matrix theory were too artificial. This framework 
then chose to ignore the mean field attributes of the problem and focus instead on the 
analytic properties of the scattering matrix and its parameterization in terms of a K-
matrix. This followed the fashion of the time – since abandoned – in particle physics of 
eschewing the direct physics of hadron structure and focusing on the analytic properties 
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of the scattering matrix instead. In particle physics many interesting concepts emerged, 
such as Regge poles, but since the introduction of quarks and quantum chromodynamics 
the interest in these concepts has not been sustained. This approach for the nuclear 
problem also deserves now to be abandoned, although a number of papers for resonance 
analysis have used this approach, even recently, and have not encountered any great 
difficulty in fitting experimental data.  
 
The problem with the K-matrix approach is that it introduces all kinds of analytic 
properties, such as ghost states, which are not easily related to nuclear structure. More 
generally, the resonance parameters of this framework also do not relate naturally to the 
quantities arising out of nuclear structure studies. There seems then little point in 
dwelling further on this framework here and little point in analyzing data with it. 
Rosenfeld’s concerns did serve to direct attention to the physics of the channel 
parameters of the R-matrix theory, as we do (below) in Section 2.2.3. 

2.2.2 The Kapur-Peierls Framework 
In the middle 1930’s – the very earliest years of nuclear physics – Kapur and Peierls5 
were the first to develop a comprehensive framework for nuclear resonance reactions. 
(The R-matrix theory developed a few years later). They divided the configuration space 
of all the particles into an external and internal region – just as we do for R-matrix theory 
– but they chose very different boundary condition numbers for the resonances of the 
internal region. Looking at Eqn. (35), Kapur and Peierls chose Lℓ (not Lℓ*) to be zero by 
the choice: 

 b S iP= +l l l  (50) 

This special choice brings with it some significant advantages. First, the boundary 
condition number corresponds to purely outgoing waves:  quite naturally, the resonances 
decay. Second is the enormous advantage, when we change all the functions to matrices 
as in the next section, that matrix inversion is entirely avoided. Those who struggle with 
the complicated matrices of the R-matrix theory will wish fervently that the framework of 
Kapur and Peierls would have triumphed. 
 
It is the significant disadvantages of the framework, which have limited its usefulness. 
The first of these is that the boundary condition numbers are strongly energy-dependent. 
As we shall see, the shift functions vary relatively slowly with energy (this is the saving 
grace of the R-matrix theory) but the penetration factor does not! This easily vitiates any 
analysis of low energy resonance reactions with this framework. Another disadvantage is 
that the extracted resonance parameters are not easily connected to the parameters 
emerging from nuclear structure calculations. Finally, there is a more mathematical 
disadvantage, namely that the boundary conditions are complex numbers. This means 
that the eigenvalue problem for the resonance states is not Hermitian and the 
completeness theorems do not necessarily hold. 
 
This speaker is not aware of many analyses of data, which employ the Kapur and Peierls 
framework but it has been used for the theory of direct reactions9. 
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2.2.3 A General Discussion of the Advantages and Problems of R-Matrix 
Theory 

It will become evident in the sections, which follow that the R-matrix theory is a proper 
framework for the description of resonance reactions, especially the kind of nuclear 
reactions, which dominate for astrophysical reaction rates. It is solidly based in our 
physical knowledge of the atomic nucleus: it relates easily to the ideas associated with the 
nuclear mean field; its resonance energies relate easily to observed energy levels; its 
reduced widths correspond to the spectroscopic factors of these levels as calculated with 
the nuclear shell model; it leads straightforwardly to resonance cross section formulae 
when one requires approximations involving either a small number of levels or a small 
number of reaction channels; it is easily employed to derive results for average cross 
sections at higher energy, such as those needed for the interpretation of the optical model 
of nuclear reactions.  In short, it has a universality of application and a close tie to 
physics not matched by the other frameworks. It is in this perspective that we discuss the 
problems of the R-matrix theory. 
 
The first reaction of many people to the R-matrix theory is that it is cumbersome. It is! As 
we shall find, it usually involves matrix inversion, which makes the written formulae 
messy and makes the work of diligent programmers, such as our esteemed colleague, 
Professor Azuma, quite tedious. 
 
Although, formally, the R-matrix theory is all encompassing, the treatment of resonance 
reactions with the R-matrix usually involves focusing on the data in a small energy 
interval and then, necessarily, making approximations which throw away all levels or 
channels not pertinent to that interval. That means that direct reactions – which require 
contributions from large energy intervals – are thrown away along with the discarded 
levels in such approximations. Even the scattering phase shifts of the formulae are those 
of a hard-sphere rather than the appropriate mean-field phase shifts.  (We shall comment 
on this more fully below.) Therefore direct reactions, even direct capture reactions, do not 
easily emerge from the R-matrix framework and are an add-on because they arise from 
the distant levels, which were thrown away. 
 
Historically the greatest unease with the R-matrix theory arose from the auxiliary 
parameters of the theory – the matching radii and the boundary condition numbers, both 
needed to define the resonant states and thus give body to the theory – which many 
regarded, initially, as both arbitrary and artificial. This unease was not helped by the fact 
that almost all of the early papers on R-matrix theory emphasized the arbitrariness of 
these parameters. Often the boundary condition numbers were simply chosen to be zero 
for all channels – a good choice if they are indeed arbitrary – and even in Lane and 
Thomas (Ref. A) the heuristic section on elastic scattering by as spinless potential 
interaction begins by making this choice of boundary condition number for all partial 
waves. For such reasons we shall focus here on the physics of these auxiliary parameters 
and show that there are “natural” definitions well rooted in good physics. This then 
becomes a strength, not a weakness, of the theory. The initial unease was misplaced. 
However, we pay a price for such natural definitions.  The boundary condition numbers 
may become modestly energy dependent, not enough so that it vitiates a resonance 
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analysis of data in a relatively small energy interval. Such natural choices improve the 
connection to nuclear structure. 

2.3 Natural Boundary Conditions and Matching Radii 
To preserve the Hermitian nature of the eigenvalue problem for the resonant states the R-
matrix theory insists that all the bℓ are real. Thus we cannot make the Kapur-Peierls 
choice, Eqn. (50). What can we do? There is some advantage to making the choice to 
correspond as closely as possible to that of purely outgoing waves. Therefore it is 
tempting to alter Eqn. (50) and to make the bℓ equal to the real part of the logarithmic 
derivative of an outgoing wave, namely: 

 b S≡l l  (51) 

This can be compared to Eqn. (50). We shall call this the “natural” boundary condition. 
 
The shift functions generally vary slowly with energy (the only real exception pertains to 
“halo” states, s-wave neutron states which are slightly bound:  such states extend very far 
beyond any normal matching radius and thus require special care, in any case, in any 
resonance analysis) so that if we make the choice of energy at which the equality 
Eqn. (51) holds to be in the energy interval in which the data is analyzed then the level 
shifts, ∆ℓ, are close to zero for all of the resonances in the interval and we then have the 
happy circumstance that the resonance energies, Eλℓ, all nearly coincide with the 
positions of the states of the nucleus. We also note (see Section IV of Ref. A) that for 
neutrons at zero energy the natural boundary condition number, Eqn. (51), is bℓ = aℓ ℓ, as 
noted above, and that then all of the single-particle neutron widths have the familiar value 
(γλℓ

2  =  (ħ2 / maℓ2) which holds for s-wave neutrons. Thus the natural boundary condition 
numbers are not only physically compelling but they also make the extracted level 
energies and level widths as close as possible to those arising from the shell model.   
 
What then should one do about the boundary condition numbers in fitting astrophysical 
reaction data? We recommend that one choose the boundary condition numbers so that 
for each reaction channel it is a fixed number chosen so that the level shift vanishes 
somewhere in the energy interval of interest. Where? This should not matter much. If the 
choice does matter – as is the case for halo states – then more care must be taken. Perhaps 
one can say that the very applicability of the R-matrix framework comes into question if 
the level shifts vary sufficiently with energy to affect the data analysis. This is then like a 
warning bell. 
 
Having chosen the boundary condition numbers as suggested one should not ignore the 
level shifts completely, even though they will be quite small. After all, the level shift 
function is moderately energy-dependent and it is best to include it explicitly in the level 
formulae. Alternatively, approximate methods exist (see Ref. A) for including the first 
order energy dependence of the shift function by using its energy derivative to 
renormalize the reduced widths. Usually this approximate method is more cumbersome to 
employ than incorporating the proper shift function in the formulae as we have suggested. 
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The occurrence of a finite but nonzero value of bℓ essentially implies that we have an 
impedance matching problem, a term deliberately meant to convey the kind of situation 
which one encounters in the analysis of electromagnetic cavities – a classical problem 
from which the R-matrix theory gained a significant amount of its original impetus. This 
led us to make some general remarks about boundary conditions. 

In order for a wave equation to have solutions, Xλℓ, which are part of Hermitian boundary 
value problem we need at the boundaries to have linear homogenous boundary condition 
such as rdXλℓ / dr = bℓ Xλ, where bℓ is a real constant. The need for boundary conditions 
of this kind arises from the same Variation Principle or Action Principle as the wave 
equation itself.   

A classical example familiar to every student of physics pertains to the vibrations of a 
stretched string under tension, T. To make an analogue with the resonances of neutrons, 
above, we consider on Fig. 3, a string which has a fixed end at its left end (to simulate the 
fact that the radial equation must be finite at r = 0) and then enquire about what we are 
allowed to do at the right end of the string. Usually discussions of stretched strings refer 
to two specific cases: a fixed end (bℓ = ∞) or a free end (bℓ = 0). But what about the 
physics of the more general case where bℓ is allowed to have any finite or infinite value? 
For the string, as the figure shows, this physics can be achieved by attaching to the end of 
the string a vertical, massless spring (restoring force for vertical displacements, y, is 
F = sy, where s is the spring constant). As the end of the string moves the vertical 
component of the tension, T, is balanced exactly by the restoring force of the spring, that 
is, T dy/dr = sy. Thus for this system of string plus spring we have a general boundary 
condition for the end of the string which is r dy/dr = (rs/T) y, so that we have bℓ = sr/T, an 
arbitrary constant, and we can achieve arbitrary values of the boundary condition number 
simply by varying the spring constant. To make an analogue for all partial neutron waves, 
ℓ, we choose the spring constant to have the value s = ℓ T. In this string-spring system we 
impedance-match at the right-hand boundary to accommodate the spring, or in the case of 
the neutron waves, to accommodate the effect of the angular momentum barrier. 

Although the natural boundary condition numbers have been discussed for four decades, 
the choice of matching radii has had much less attention. Even in many recent fits to 
astrophysical reaction data the matching radius has been left as a free parameter. Yet 
there is some physics guidance for the choice. If dealing with the potential scattering of 
neutrons by a square-well interaction only a fool would choose a matching radius 
different from the square-well radius. But why not be the fool? After all, the framework 
allows an arbitrary choice. I discussed this in a paper10 almost a decade ago, and showed 
that for s-wave neutrons, making a choice different from the square-well radius led to 
obtaining the wrong level width for the calculation of Fig. 2, just as the choice of the non-
natural boundary condition number led to the wrong position of the energy level. Thus, in 
this case, physics dictates the sensible choice of a. This appears to be more difficult to 
demonstrate for higher partial neutron waves but still, for square wells, the sensible 
choice should prevail.   

But what should one do for the typical nuclear reaction in which the mean field has a 
Saxon-Woods shape with a mid-point radius and a surface thickness significantly 
smaller? Should one choose a large matching radius so that most of the mean field is in 

17  



the internal region? Should one leave the radius as a free parameter? There is no easy 
answer to these questions.   

 

Fig. 3. A mechanical analogue for the general boundary condition, b = r φ’/ φ at r = a, of the radial wave 
function. In the analogue we have a stretched string, with tension T, which is fixed at the left end (to 
simulate the fact that the radial wave function vanishes at r = 0) and at the right hand we have attached the 
string to a vertical massless spring, of spring constant s. By varying either s or T we can achieve either the 
usual “fixed” end boundary condition or the usual “free” end boundary condition or any value of b in 
between these two extremes. 

It turns out that the R-matrix fits to data do not generally appear to depend critically on 
the choice of radius, at least within a sensible range, say from the mid-point radius of the 
mean field up to a few fermis beyond it. Fred Barker11 has explored this insensitivity of 
the framework to choice of radii. Still we should remember that it we move the radius 
outward, in the presence of significant barriers, then the width may not change but the 
penetration factor may become much smaller and the reduced width correspondingly 
larger. It is a matter then of which choice of radius leads to reduced widths, which are 
readily comparable to the results of nuclear structure calculations. As discussed in Ref. C, 
the right choice for this purpose appears to be a matching radius approximately one fermi 
larger than the mid-point radius of the mean field. That makes good common sense but 
one should also feel free to vary the choice a little about this sensible value. 

Any such choice then leads to a troubling matter for the R-matrix framework. Since the 
mean field falls quickly but reaches zero only at very large radius are we correct in 
ignoring it completely in the external region? Surprisingly the answer appears to be yes. 
Strictly speaking, if we are dealing with a reaction problem in which much data has 
yielded a physical answer to the parameter of the optical potential which applies to the 
problem we should, after making our choice of radius, use the tail of the real part of the 
optical potential, which lies beyond the matching radius to modify the external wave 
functions. The way to do this is straightforward in principle. We choose a radius much 
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beyond the matching radius at which the real part of the optical potential is negligible and 
then take the regular and irregular solutions, Fℓ and Gℓ, and continue them inward, 
analytically, up to the matching radius through that part of the external region in which 
the optical potential cannot be neglected. These modified wave functions will lead to 
significant modifications of the penetration and shift functions. In particular the level 
widths will be significantly larger because the Saxon-Woods potential is much less 
reflective than the square-well embedded in the R-matrix formulation. (In the R-matrix, if 
we have a potential in the internal region but ignore if outside then, in effect, we make 
the abrupt change, which pertains to a square-well). 

Fortunately there is a fix, which works and, quite generally, allows one to forget about 
making those analytic continuations of the external quantities. Almost half a century ago 
Peaslee12 showed that if one multiplies the reduced widths by a reflection factor given by, 

  (52) 1/2 1/2f = (2   K d) coth (2  K d)π π

where K is the wave number deep inside the optical potential and d is the surface 
thickness,  then the level widths are corrected for reflection. Further, in ref. C it is shown 
that the usual R-matrix framework with its garden-variety regular and irregular wave 
functions applies. I would not want to discourage some ambitious theorist in showing 
how well this approximate procedure works in fitting actual data, compared to making 
the correct analytic continuations! 
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3 THE FEW- CHANNEL, MULTI-LEVEL 
R-MATRIX THEORY 

We now tackle the full nuclear problem with its denumerable infinity of reaction 
channels and its denumerable infinity of energy levels. At first we must enumerate the 
reaction channels. Then we follow the preceding sections in showing how the collision 
matrix, whose rows and columns pertain to channels, can be connected to an R-matrix. 
Of course, in the description of cross section one must make approximations within this 
framework. In this section we show how, if one retains only a few channels, the implicit 
matrix inversion is manageable and one is then led directly to the few-channel, many-
level approximations of the R-matrix theory. In the next section we show another way in 
which the approximations can be made manageable. The R-matrix has the felicitous 
property that the problem of matrix inversion, in a space which pertains to channels, can 
be transformed into a problem of matrix inversion in a space pertaining instead to levels. 
In this new space one then obtains the many-channel, few-level approximate formulae, 
which are required for many applications to astrophysical reactions.  

3.1 The Configuration Space for Nuclear Resonances 

We first enumerate the reaction channels. If we have A nucleons the configuration space 
has 3A dimensions and this cannot easily be depicted on a two-dimensional drawing. 
Ignoring the multitude of dimensions we qualitatively describe the external and internal 
regions of the space for resonance reactions on Fig. 4, taken from Ref. B. There is an 
internal region of the compound nucleus (in this case Be8) in which, perhaps very briefly, 
all of the A nucleons are together in a resonance state. In the external region are the 
various possible channels through which the compound nucleus can be formed or decay. 
The system looks rather like a Scottish bagpipe, which consists of a bag with many pipes 
protruding from it. If one blows into one pipe rude noises may emerge from any of the 
others. The physical reason why the space can be divided into such external and internal 
regions is that the forces between nucleons are rather short range (one of the miracles that 
emerges from QCD where the underlying gluon forces increase with distance!). 

It is the external wave functions, which enumerate the reaction channels. We write the 
total external wave function as a sum of products, for each channel c, of the radial wave 
function, φc, with the channel wave function, ψc: 

 c c c =   φcΨ Σ Ψ  (53) 

in which the channel wave function is: 

  (54) 
s

l
c c m m l s J m sΨ (1/r )Φ Σ Σ (lsm m |JM )i ¡ Χα≡

ll sml
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Fig. 4. A rough illustration, in two dimensions, of the various regions in the many-dimensional 
configuration space pertinent to the theory of resonance reactions. The compound nucleus, say Be8, is 
shown by the region marked V. A number of channels emerging from V are also shown, e.g. Li7 + p, 
corresponding to an emitted proton and Li7 in its ground state, or Be7* + n, corresponding to an emitted 
neutron and Be7 in an excited state. Only a few of the reaction alternatives are shown: the angular 
momentum quantum numbers, which, together with the reaction alternative, define a channel, are not 
indicated. The surface, S, of the compound nucleus is shown by heavy lines. 

in which Φα represents the state of internal excitation of the two particles in the channel. 
Thus the reaction channel, c, is specified by the quantum numbers c ≡ (α, ℓ, s, J, MJ). We 
note that for this choice of channel parameters we have recoupled the angular momenta in 
order to obtain J.  The vector additions involved are: 

  (55) s = I + i,                J =  + sl

in which  I  and i are the intrinsic spins of the two particles in the channel. 

The ψc are a set of unit vectors for the external channel space. At the nuclear surface (rc = 
ac), where ac is the chosen matching radius for the channel, we get a piece, Sc, of the total 
channel surface, S, of configuration space. 

  (56) c cS=Σ S
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In any integration over the total channel surface we must, of course, integrate over all of 
the angles of the piece, Sc. 

The clear separation into external and internal parts of the configuration space holds only 
if we have a proper orthogonality condition for the channel wave functions, that is: 

 ccs
 * dS = δc c ′Ψ Ψ∫  (57) 

This orthogonality condition exerts some constraints on the choice of channel radii: we 
should not choose the matching radius too close to the internal region of the compound 
nucleus (in general, the choice of a matching radius about one fermi larger than the mid-
point radius should suffice for this purpose).   

We are now ready to define the internal and external bits of the problem as we did in the 
preceding two sections. For no good reason we reverse the previous order and deal with 
the internal bits first, thus defining the R-matrix, and then in the following subsection we 
connect the R-matrix to the collision matrix and, in turn, to the cross sections. The 
derivations in the next two subsections are more in the nature of sketches, relying on the 
more complete treatment of the simpler problems in the preceding two sections: fuller 
treatment can be found in either ref A or ref, C. 

3.2 The Internal Bits of the Nuclear Problem 

In the full configuration space we write down the Schroedinger equation for the full wave 
function, Ψ, 

 H =EΨ Ψ  (58) 

as well as for the resonant states, Xλ: 

 HX E Xλ λ λ=  (59) 

whose definition requires, in addition to the wave equation, an imposed boundary 
condition at each piece of the channel surface: 

 ( )
c cλ r a cc λ c / X | =br dX / dr =⎡ ⎤⎣ ⎦  (60) 

The resonant states again form a complete set in terms of which we can expand the full 
wave function: 

 C Xλ λ λΨ =Σ  (61) 

with expansion coefficients: 

  (62) C X dλ λ
= ∗ Ψ∫ V

for which the integration extends over the full volume of the internal configuration space. 
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Again, we use Green’s theorem to find the expansion coefficients of the harmonic 
analysis, Eqn. (62). This yields: 

  (63) -1 2
c c c c c cC  = (E  - E)    (φ  - b  φ ) ( / 2 m a ) λ λ λγ ′Σ h

where prime again indicates the dimensionless derivative (rd / dr) and the reduced width 
amplitude is given by: 

  (64) 2 1/2
c c c c= ( / 2 m a )  * X  dSλγ Ψ∫h λ

Evaluating the harmonic analysis on the full surface, S we then find the derivative of the 
internal wave function on the channel surface in terms of its value at the surface – and, 
finally, it provides us with the much-sought R-matrix: 

 2 1/2 2
c c c c cc c c c c c( / 2 m a )  φ  =  R  [φ  - b  φ ]  ( / 2 m a )′ ′ ′ ′ ′ ′ ′

′∑h h  (65) 

and  

 cc c cR  =    / (E  - E)λ λ λ λγ γ′ ′∑  (66) 

We shall comment shortly (Section 5) on the physics of the reduced width amplitudes but 
first we complete the external bits of the problem. 

3.3 The External Bits of the Nuclear Problem 

By writing the radial wave function of Eqn. (53) in terms of incoming and outgoing 
waves the full external wave function is: 

 1/2
c c c c c c=  (1 / v )  (A  I  - B  O ) cΨ Σ Ψ

c

c

 (67) 

The incoming Ac and Bc are arbitrary coefficients and the incoming and outgoing waves 
have asymptotic behaviour which follows from Eqn. (37) and Eqn. (38), namely: 

  (68) c c c c c c c c cI  = O exp i [k r  - (1/2)  - η  n (2 k r ) ] π∗ ≈ l l

The collision matrix is then defined by the connection between incoming and outgoing 
waves: 

  (69) c c ccB =Σ U A′

In words, it gives the outgoing waves in each channel from the incoming waves in any 
channel. If we multiply Eqn. (67) by ψc* and then integrate over the full channel surface, 
S, we get: 

 1/2
c c c c cc cφ  = (1 / v )  [A  I  -  U  A  O ]′ ′ ′Σ  (70) 
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in which we have incoming waves in the channel, c, leading to outgoing waves in all 
channels. We now take the derivative of the channel wave function Eqn. (70) and divide 
it by the wave function to obtain its logarithmic derivative. Matching this with the 
logarithmic derivative of the internal wave function obtained from Eqn. (65) we then get 
the collision matrix in terms of the R-matrix: 

  (71) 1/2 -1 -1 -1/2
cc c c c c cc c c c c c c c cU  = (k  a )  O   [1 - RL ]  [  - R  L *] I  (k a )δ′ ′′ ′′ ′′ ′ ′′ ′ ′ ′ ′ ′Σ

We have displayed all of the indices of the matrices, which clearly indicates which 
quantities are column matrices and which are two-dimensional matrices. We now see 
that, apart from the matrix indices Eqn. (71) is the same as Eqn. (25) or Eqn. (35) of the 
simpler examples. 

We can change Eqn. (71) into a more recognizable form − a form, which lends itself 
more directly, to the R-matrix programs − by observing that: 

 1/2 -1 -1/2 1/2 -1/2
c c c c c c c c c c(k a )  O   (k a )  = exp [i ( + ) ] P  P′ ′ ′ ′ ′Ω Ωl  (72) 

where Ωc is the combination of hard-sphere and Coulomb phase shifts given by Eqn. (46) 
and  Lc ≡ Sc + i Pc. The result for the collision matrix is then: 

 

       (73) 
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cross section for a reaction pair, α, with channel spin, s, proceeding to reaction pair, α′, 
with channel spin, s′, is:  

 ( )
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The Z coefficients are products of Clebsch-Gordan coefficients. This differential cross 
section may be integrated over all angles to yield the angle-integrated result: 
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In turn, this may be summed over all outgoing channels, α′, s′, to yield the total cross 
section: 
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The result for the total cross section has employed the fact that the collision matrix is a 
unitary matrix, a condition that can be written as: 
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In (77) R.P. stands for “real part”. We have also in the total cross section averaged over 
initial spins and summed over final spins. The factor [(2I + 1)(2i + 1)]-1 arises from the 
initial state average over spins. 

The general properties of the collision matrix, such as its unitarity, are very interesting 
and intimately tied to conservation laws, such as time-reversal invariance, detailed 
balance, causality, etc. However, this topic is beyond the scope of these lectures. More on 
this subject can be found in Ref. A. 
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The matter of the coherence of different partial waves is of some interest. When do waves 
of different ℓ or J interfere with each other, as in Eqn. (75)? There is a general answer: 
when we integrate over the angles to which the partial waves, ℓ, pertain the coherence (or 
interference) disappears. Similarly, if we look at the cross sections for polarized beams or 
target particles the states of different spin polarization are coherent but this interference 
disappears when we sum or average over spin polarizations. The cross sections including 
polarization can be found in my review paper on the Statistical Theory of Nuclear 
Reactions13.
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4 THE FEW-LEVEL, MULTI-CHANNEL 
R-MATRIX THEORY 

4.1 The Level-Matrix Form of the Collision Matrix 

Through what appears to be almost “matrix-magic” the cumbersome problem of inverting 
a matrix, in Eqn. (73) whose rows and columns refer to channels, can be turned around 
to, instead, inverting a matrix whose rows and columns refer to levels. In this new form it 
is easy to handle many channels as long as we restrict the number of levels to something 
manageable. The result, which we shall prove, yields a form of the collision matrix 
alternative to Eqn. (73) as follows: 

 (79) 
1/2 1/2

cc c c cc cU  = exp[ i (  + ) ] {  + i   A } cλλ λ λ λλδ′ ′ ′ ′ ′ ′Ω Ω Σ Γ Γ ′   
  

where 

 1/2 1/2
c c= ( 2 P  )   cλ λγΓ  (80) 

and                      

 -1( A )  = (E - E)  +   - (i/2) λλ λ λλ λλ λλδ′ ′ ′ ′∆ Γ  (81) 

with 

 ( )c c =  c c cS bλλ λ λγ γ′ ′∆ Σ −  (82) 

and 

 2c c c cPλλ λ λγ γ′ ′Γ =Σ  (83) 

We comment below on how this level matrix formulation of the R-matrix theory is, 
generally, at least as useful as the many-level, few-channel formula for application in 
nuclear astrophysics. It leads very easily to the Breit-Wigner formula. First we prove 
Eqn. (79).   

4.2 Proof of the Level-Matrix Form of the Collision Matrix 

The proof of the level-matrix form of the collision matrix was first given by Thomas14. It 
relies on the fact that the R-Matrix, Rcc′, is a sum over levels of individual terms each of 
which is a product of one term depending only on c and the other term depending only on 
c′. To make the proof we assume that: 
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 -1
cc cc c c c[ (1 - RL)  (1 - R L*) ]  =  +  2 i P    Aλλ λ λδ γ γ λλ′ ′ ′ ′ ′ ′Σ ′

λ

 (84) 

and we find Aλλ′ to complete the proof. We begin by multiplying both sides of Eqn. (84) 
by the matrix (1 – RL) from the left and thus we get: 

cc cc c c c c c c

c c

(1- RL*)  = ( - R L )  + [ -    / 
(E - E)] [ 2i P A ] 

c cc cc

c

λ λ λ

λ λ λ λ λ λ

δ δ δ γ γ
γ γ

∗
′ ′′ ′′ ′′ ′′ ′′ ′ ′′ ′′ ′′

′′ ′ ′ ′′ ′′ ′ ′ ′′ ′

Σ Σ Σ

∑
 (85) 

In Eqn. (85) we have changed the dummy index, λ, of Eqn. (84) into λ’’. Writing 
Eqn. (85) out more fully we get: 

( ) ( )
( ) 1

/ /

2 2

cc c c c cc c c c

c c c c c c c c c

L LE E E E

i P A i P AE E

λ λ λ λ λ λλ λ

λλ λ λ λλ λλ λ λ λ λ λλ

δ γ γ δ γ γ

γ γ γ γ γ γ

∗
′ ′ ′′ ′ ′ ′

−
′ ′ ′ ′ ′ ′ ′′ ′′ ′′ ′ ′′ ′′ ′ ′ ′′ ′

−Σ = −Σ +− −

Σ + Σ − λ λ

 (86) 

Collecting terms and again relabelling some of the dummy indices, which are summed, 
yields: 

 ( ) ( )10 2 c c ci P A AE E E Eλλ λ λ λλ λλ λ λλ λ λλ λγ γ δ ξ−
′ ′ ′ ′ ′ ′ ′′ ′′ ′′ ′⎡ ⎤=Σ − +Σ− −⎣ ⎦  (87) 

with 

 ( )/ 2c c c cL iλλ λ λ λλ λλξ λ γ′′ ′′ ′′ ′′ ′′ ′′ ′ ′=Σ = − ∆ + Γ  (88) 

Since Eqn. (87) must hold for arbitrary values of γλc and γλ′c′ we can set the square 
bracket equal to zero and therefore we have, finally, 

 ( ) ( ) ( )1 / 2E E iA λλ λλ λλλλ δ−
λ′ ′′ ′= + ∆ − Γ−  (89) 

Having found that the A matrix assumed in Eqn. (84) exists, we have proven the level-
matrix formula Eqn. (79). 

4.3 Working with the Level-Matrix Formula 

We examine the level-matrix by looking at its full matrix glory: 

( )

1 1 1 12 12 13 13

12 12 2 2 2 23 23
1

13 13 23 23 3 3 3

2 2 2

2 2 2

2 2 2

i i iE E

i i iE E
A i i iE E

−

⎛ ⎞+ ∆ − − Γ ∆ − Γ ∆ − Γ⎜ ⎟
⎜ ⎟
⎜ ⎟∆ − Γ + ∆ − − Γ ∆ − Γ⎜ ⎟

= ⎜ ⎟
⎜ ⎟∆ − Γ ∆ − Γ + ∆ − − Γ
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

� �

� �

� �

� � �
� �

� � �

(90) 
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It is a symmetric matrix with a denumerably infinite number of rows and columns. Of 
course, in the few-level approximation we drop all but the relevant few levels. With such 
an approximation the collision matrix in its level-matrix form, Eqn. (79), is the best 
formula for many low energy astrophysical reaction cross sections. Probably, even, it 
applies in the majority of such cases. It is one of the two formulas of U in Azuma’s 
programs.   

We note that the off-diagonal elements of the level matrix, A-1, contain “mixed” widths 
and shifts, that is, terms like the total shift or total width (they are summed over all 
channels) which are sums of terms of arbitrary sign because they contain products of 
reduced width amplitudes (not reduced widths) which do not refer to the same level and 
which can then have arbitrary sign. 

If we ignored the off-diagonal elements of the level matrix then the collision matrix 
would be simply a sum of Breit-Wigner amplitudes. In other words, we would have 
something very much like the Kapur-Peierls formalism. Life would be simple. Do the 
off-diagonal elements matter? The answer is that in a number of cases, such as most 
astrophysical reaction in light nuclei, they do matter. There are other cases, such as 
neutron capture in heavier nuclei where they do not matter much. 

For instructive reasons let’s look briefly at low energy (s-wave) neutron cross sections in 
heavier nuclei such as those for neutron capture on a rapid timescale. Here the shift 
function vanishes and so we have no shift terms in Eqn. (90). The total width for neutron 
resonances pertains to the neutron width itself and to the capture width. In many cases the 
capture width dominates: in a few it does not.  If the capture width dominates then 
Eqn. (90) reduces to the diagonal terms and we really have a sum over Breit-Wigner 
amplitudes. The reason that the off-diagonal elements are unimportant in this case is first, 
that the neutron widths are small and, secondly, that the capture widths refer to a sum 
over literally thousands or even millions of individual radiative transitions (except when 
we are really near to the neutron drip lines, the neutron brings in about 7 MeV into the 
compound nucleus and the resonances so far above the ground state can decay to many of 
the levels below). The “mixed” widths, involving many products of reduced-width 
amplitudes of random sign, vanish. Because there is such a plethora of radiative capture 
partial widths the total capture width does not fluctuate much and is roughly equal to 
about 0.030 eV for most heavy nuclei, give or take a factor of about two. The total width 
is much smaller than the level spacing and we have well separated resonances as one 
found in even the earliest neutron cross-section data seventy years ago. It was garden 
variety cross sections of this kind which immediately led to Bohr’s picture of the 
compound nucleus and, indeed, to the reaction theory frameworks which we are 
discussing. In this case of dominance of the capture width the peak resonance cross 
section is (4π/k2)(Γλn/Γλγ) and therefore fluctuates greatly because the neutron widths 
fluctuate (see Section 5). The cross section area (total width times peak cross section) is 
directly proportional to the neutron width. 

In the fewer cases where the neutron width dominates the capture width (for example, for 
Th232, Mn55 or U238) we have a somewhat simpler situation, illustrated on Fig. 5, where 
the individual resonances all have the same peak cross section, (4π/k2). In the case of 
Xe135, the famous fission product which was recognized as a reactor “poison”, such a 
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cross section happens to fall right at thermal neutron energy (0.025 eV) and the cross 
section is then 30 million barns, which is 30 million times greater than the normal 
geometric cross section! Even in this case where the neutron width is larger, the off-
diagonal elements of the level matrix do not appear to matter much.  

Fig. 5. The total neutron cross section for Th232, shown from a neutron energy of 50 eV up to 450 eV. 

The seeming irrelevance of the off-diagonal elements of the level matrix does not apply 
to situations where we have some broad resonances, which overlap other resonances. 
This is commonly the case for astrophysical reactions in light nuclei. Here one should use 
the proper level-matrix, which Azuma has programmed. It would be interesting to 
explore some of these cases, for example, C12 + α scattering, to examine how the fit 
might be affected if one ignores these off-diagonal elements. This would be a good 
testing ground for the applicability of the R-matrix framework. There is an even better 
one. 

If some ambitious theorist were to ask me where could he/she find the best test for R-
matrix applicability I would point to the fission cross sections of the fissile isotopes, U235, 
U233 and Pu239. (The astrophysics readers of these notes can ignore the story told in this 
paragraph.) These cross sections have strongly overlapping levels – unlike most low-
energy neutron cross sections – because of the decay into fission channels for which the 
widths are much larger than the neutron widths. In the 1940’s and 1950’s these were the 
most important cross section data (until the mid-1950’s the US falsified the data to 
confuse the enemy!). It was difficult to fit these data with the R-matrix formulae or, 
indeed, with those of any other framework, because no one really knew what was meant 
by a fission channel. A fission channel was certainly not the various final fission products 
because these were known to be formed only in the final stages of the break-up of the 
liquid drop. But the modes of drop break-up were not known and only the total fission 
cross-section was measured, not the partial cross section to any perceived fission channel. 
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Even now, when we know much more about the process of fission, with its second and 
third wells, the specification of a fission channel is not entirely clear nor its relation to 
what is measured. Soon after Thomas invented the level-matrix formulation the present 
author15 was able to show that it lent itself admirably to the description of these fission 
cross sections. If we look at Eqn. (90) again we see that the diagonal elements require 
only the total width for fission. The “mixed” widths in the off-diagonal terms also sum 
over all channels. We can regard these “mixed” widths as scalar products, in channel 
space, of vectors in channel space whose length is the square root of the total fission 
width. Therefore each such “mixed” width requires only a single new parameter, the 
cosine of the angle between these vectors. No specification of the nature of fission 
channels is required. Further, the average value of the cosines from the various off-
diagonal elements tells us how many fission channels there must be without specifying 
them (as the number of dimensions grows the average value of the cosine of the angle 
between two arbitrary vectors falls off). This treatment was very successful in 1958 but at 
that time only very slow computers were available (one could watch the lights of the 
computer in action for many minutes as it diagonalized the 3x3 level matrices!). It was 
not possible to make any proper least squares fit. I don’t believe that anyone has returned 
to the analysis of these fission cross sections or used them as a vehicle to test the 
applicability of the R-matrix formulation. It is my choice for the best such vehicle. 
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5 THE R-MATRIX AND NUCLEAR 
SPECTROSCOPY 

No treatment of data for the cross sections of nuclear astrophysics should be made 
without careful consideration of the relationship of the data to nuclear spectroscopy. As 
we shall see, the R-matrix goes hand-in-hand with nuclear spectroscopy. This section 
deal with topics pertaining to the applicability of the R-matrix theory and it will then, 
necessarily, take us into discussing nuclear spectroscopy.  

This is only the briefest of glimpses into the nuclear spectroscopy relevant for 
astrophysics. Unfortunately the whole subject of nuclear spectroscopy has fallen into 
neglect in recent years and deserves better attention. During the 1960’s, when the initial 
ideas about nucleosynthesis were being explored, nuclear spectroscopy was in full 
flourish and, in fact, was one of the main vehicles then for the application of quantum 
mechanics. During that time a great deal was learned about the energy levels of atomic 
nuclei. Perhaps these notes will help to direct some of the students in nuclear astrophysics 
back to the important ideas associated with the development of nuclear structure and will 
thus aid them in making better descriptions of the cross section data. For heuristic 
reasons, only the simplest and oldest ideas of nuclear spectroscopy will be used. There 
are now much more powerful methods available to calculate spectroscopic factors and 
spectral functions, including the effects of core polarization and collective motion. 

5.1 Spectroscopic Factors and Single-Particle States 

The level widths of the R-matrix theory can be written (cf. (48)): 

 22c c c cP Sλ λ λγ cΓ = = Γ  (91) 

where Sλc is called the spectroscopic factor and Γλc
 is a single-particle width pertaining to 

the channel c. In words, the spectroscopic factor, which has a maximum value of unity, 
gives the fractional component, contained in the compound state, of a single-particle 
internal state belonging to the channel c. We examine this relationship more closely. 

It is the messy two-body nucleon-nucleon interactions, which complicate things and 
make spectroscopic factors necessary. Let’s begin by assuming that a benevolent deity 
(theological allusions are particularly appropriate here at Notre Dame University) decreed 
that an incoming nucleon does not interact with all of the nucleons of the target but, 
instead, interacts with the target only through a mean field – the average of the nucleon-
nucleon force and also the potential of the nuclear shell model. In that case we have the 
kind of potential scattering treated in Section 2. The target nucleons are not excited by the 
beam. All of the spectroscopic factors Eqn. (91) are unity. For each partial wave (it is 
trivial to add spin to the discussion of Section 2 so that the single-particle states may 
correspond to the actual states of the j-j coupling shell model) we see only widely spaced 
single particle states, typically several tens of MeV apart for all nuclei. In shell model 
calculations one often uses an infinite harmonic oscillator to show all of the levels, for 
example, 1s1/2, 2s1/2, etc., 1p1/2, 1p3/2, 2p1/2, etc., 1d5/2, etc., etc., in an obvious notation for 
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all of the partial waves which gives the principal quantum number (equal to the number 
of nodes of the corresponding radial wave function) as well as the orbital angular 
momentum, ℓ, and the value of j. In a comparable realistic nuclear potential – such as a 
Saxon-Woods potential of finite depth – we must, of course, add the “natural” boundary 
condition to establish the corresponding resonant states whose spacing is the same as for 
the infinite harmonic oscillator. The wave functions and their energies are also very 
similar to those of the infinite harmonic oscillator used in the shell model. 

But then we look at the resonances of protons or neutrons, as in Fig. 5, and see that at 
moderate excitation energy above the ground state the spacing between levels is not 10 
MeV but rather only a few keV or even a few eV; there are thousands or even millions of 
more resonances than this single-particle picture provides. What happened? The trouble 
is that the devil interfered with this simple view of the deity: the single-particle states are 
mixed, by the nucleon-nucleon interactions, into the vast sea of states involving 
excitation of the target nucleus. This is the compound nucleus, a descent into nuclear 
quantum chaos. In the early days of the nuclear shell model it was thought that perhaps 
the shell model applied only to the nuclear ground states and that at higher excitation 
energies one fell immediately into such chaos. Further work showed that the descent was 
more gradual. We illustrate this with a simple example, which should be very helpful in 
giving us some of the guidance principles from nuclear structure for the analysis of the 
kinds of resonant reactions pertinent to astrophysical reaction rates in light nuclei. 

Consider the shell model view of the structure of the nucleus Ne20. In the simplest 
approximation for its structure we assume that there is a closed shell O16 core and four 
extra nucleons in the next open shell:  the 2s1/2, 1d5/2, 1d3/2, configuration. That is, higher 
configurations or excitation of the O16 core are ignored. Therefore one might expect that 
the levels arising from this configuration should occur in the first 10 MeV or so above the 
ground state and that the large number of levels from other configurations, which we are 
neglecting, are relevant only at higher energies. Even so, there are very many levels in 
this configuration, only one or two of which might correspond to single-particle nucleon 
states (here, clearly, s or d states) with a Ne19 or F19 target in its ground state. The number 
of different levels – all of positive parity – is easy to calculate, putting two neutrons and 
two protons into the twelve magnetic sub-states of the configuration. We find 640 energy 
levels of Ne20 (if we had chosen Mg24, instead, with eight particles in the same 
configuration we would have found almost a hundred times as many states!) distributed 
in spin as follows: 4 (8+), 12(7+), 36(6+), 64(5+), 109(4+), 129(3+), 143(2+), 97(1+) and 
46(0+). Even with such riches the shell model soon learned how to cope and thus keep 
the devil of nuclear quantum chaos at bay.  

If we neglect the nucleon-nucleon interactions, in Ne20, of the four extra nucleons beyond 
the closed O16 core, then, initially, all of the 640 energy levels are degenerate in energy. 
This degeneracy is removed when we turn on the interactions. Diagonalizing the 
interaction Hamiltonian then yields the shell model ground state of Ne20, as well as the 
shell model description of all 640 states of the chosen configuration. For each of these 
states we have a prediction of all of their properties: level energy, spin, parity, 
electromagnetic transition probabilities, etc. What is most important for the present 
discussion is that we also have a prediction for all of the spectroscopic factors, Sλc, in 
quantities such as the partial width Eqn. (91). These spectroscopic factors are the square 
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of the overlap integral between any particular excited state, as yielded by the shell model, 
and a single-particle state for the channel under consideration. For the Ne20 problem, if 
we are thinking of a neutron channel then the single-particle state is either a 2s1/2 or 1d5/2 
or a 1d3/2 neutron coupled to a Ne19 ground state wave function. Alternatively we could 
choose a channel wave function corresponding to an alpha particle single-particle state 
coupled to an O16 ground state. Assuming that the states are all properly normalized the 
spectroscopic factors have a maximum value of unity but will generally be smaller. They 
do represent the fraction of the channel wave function contained in the excited compound 
state. We make this connection more formally in the next section. 

Such shell model calculations of nuclear structure are relevant even though they must be 
guided by good physics. First of all, there appears to be some arbitrariness in the choice 
of the nucleon-nucleon interactions between the four neutrons and protons of the 
configuration, the so-called residual interaction. One certainly does not work from first 
principles (QCD) for the interactions. QCD gives some guidance about the two-body 
phenomenological force between free nucleons. When this force takes place within a 
nucleus it is modified by the Pauli principle into an appropriate shell-model residual 
interaction. Fifty years of experience with the nuclear shell model16 has led to reasonably 
good understanding of such residual interactions and also descriptions of excited states, 
which fit a vast body of data reasonably well. Second, higher configurations or core 
excitation cannot always be ignored without impunity. For example, for Ne20, the chosen 
configuration yields only positive parity states. Yet the fourth, fifth and sixth states of this 
nucleus all have negative parity. The states must arise from higher configurations for 
which the diagonalization process produces intruders into the energy regime of states of 
the configuration, which we chose. Significantly higher configurations are required to 
describe the alpha-particle cluster states known to occur at moderate energies in nuclei 
such as Ne20. Yet the simple picture dealing with only the lowest configuration has had 
great success for many of the observed excited states. Third, some bravery is required in 
tackling the diagonalization of, say, 143 2+ states in Ne20, which is necessary for a full 
shell-model treatment of these states which arise from only the lowest configuration! 

The route to an understanding with the shell model of nuclear energy levels is full of 
brilliant insights. Each nucleus has its own story. For example, for the Ne20 problem, 
which we have chosen as an illustration the first three states, 0+, 2+ and 4+, have a 
spacing suggestive of the kinds of rotational bands, which were commonly found at low 
energies in heavy nuclei. In the first decade of the shell model – the 1950’s – there 
appeared to be an almost irreconcilable difference in the collective rotational picture 
applicable to heavy nuclei and the single-particle shell model picture which pertained to 
light nuclei. This difference was bridged in that decade by studies with a number of 
nuclei in the 2s-1d shell, including Ne20, which focused on pieces of the residual 
interaction and on special classification, using spatial symmetry, of the states of the 
configuration. Some outstanding work on Ne20 by Elliott17, in 1957, led to the SU3 model, 
which had this application in nuclear physics before this symmetry group became 
important for the quark model in particle physics. 

This example leads us to write down a number of useful guidance principles, for 
resonance reactions (particularly in light nuclei). These principles arise from 
consideration of nuclear structure. They are: 
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1) The R-Matrix has parameters, Eλ and γλc
2, which can be directly related to the 

energy levels and spectroscopic factors of shell model studies.   

2) The single-particle width, Γc, is that which we encountered in Section 2. Thus we 
can write this width as: 

 ( )2 22 /c c cP f maΓ = h  (92) 

where (ħ2 / mac
2 ) is the square-well reduced width, depending on the square-well radius, 

Pc  is the normal penetration factor Eqn. (44), and f  is the reflection factor Eqn. (52), 
which corrects the square-well results for the artificially high reflection  of the square-
well. We can think of f as being associated with either the penetration factor or the 
square-well reduced width. 

3) The single-particle width Eqn. (92), leads at once to a familiar upper limit, often 
called the sum-rule limit, of any empirical reduced width extracted from a reaction 
analysis: this sum-rule limit is: 

 ( )2 2 2/c cmaλγ ≤ h  (93) 

In the Ne20 example which we illustrated above the lowest 2s-1d configuration has two 
single particle states, the 2s and the 1d, and no others. The 1d single-particle state is split 
by the spin-orbit interaction and so its reduced width is also split. The reactions reaching 
the compound nucleus levels of Ne20 in the energy regime of the 2s-1d configurations 
might contain individual states whose nucleon reduced widths approached the sum-rule 
limit. Further, the sum of all observed reduced widths for each partial wave, in the same 
energy regime, should not exceed the sum-rule limit. There is some flexibility in the sum-
rule limit, partly because of the reflection factor which may be associated with it and 
partly, in the analysis, one might have chosen an unrealistically large matching radius 
which reduces the penetration factor and then increases the reduced width proportionally. 
There is no need to associate a factor of 3/2 with the limit Eqn. (93), as was sometimes 
done in the early (pre-shell-model) papers of the R-matrix theory. 

4) The extracted reduced widths should be compared to shell-model – or other 
nuclear model – predictions for spectroscopic factors whenever possible. Again, because 
of reflection factors and the choice of matching radius, any individual spectroscopic 
factor extracted from data might be somewhat ambiguous in such a comparison but the 
ratios of reduced widths for different resonances should be a better measure of the 
predictions of the model or, turning this around, a better measure of whether or not the 
parameters deduced from the fit are physically reasonable. 

5) The single-particle states (and their “strength” as given in the sum rule limit) is 
spread by the residual interaction but only into a region of several MeV about the original 
energy of the shell model state (in the next section we explore the “strength function” 
more fully) so that we expect resonances far from the single-particle states to have little 
strength, that is, they will have small reduced widths. For example, for the Ne20 
compound system discussed above we would expect the reduced widths for p-wave or 
f-wave nucleons to be small while those of s-waves and d-waves might be large.   
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In general, in embarking on a data analysis of resonance cross sections with the R-matrix 
theory one should begin by asking what does our knowledge of the nuclear structure of 
the compound system tell us. We should ask: how far away are we from known single-
particle states? Such a question is particularly important when we choose to restrict our 
attention to a few states in the energy interval of interest but allow a distant level or two 
to be added to the fitting procedure. Such a treatment of distant levels as modifying the 
local fit is often to be recommended. But we need not allow all properties of the distant 
state to be entirely determined by the fit. For example, for any analysis involving Ne20 the 
positions of the s-wave and d-wave and f-wave and p-wave nucleon states are reasonably 
well known. If we want to add a distant level to the analysis for states involving f-waves 
we should explore where the dominant f7/2 state is located and choose the energy of the 
distant state to be that location – and expect that the analysis will require a reduced width 
close to the single-particle limit, if it turns out that a distant level is important at all. This 
applies even to bound single-particle states, as would be the case for 1p states for Ne20. 

A very different case is encountered in the C12 + α data discussed by Azuma at this 
school and pertaining to the new Notre Dame data for this process. I believe that if one 
wishes to add a distant resonance in this analysis while considering in detail the relevant 
local resonances one should give cognizance to the known alpha particle states in the 
compound system, O16, particularly to the broad alpha particle states several MeV above 
the alpha particle threshold. One can use the known energy of these levels and expect that 
the widths should be close to the single-particle value for alpha emission (note that the 
alpha sum rule limit corresponding to Eqn. (93) is smaller than that for nucleons because 
of the larger reduced mass of the alpha particle). It is instructive to remember that the 
atomic nucleus is richer than that implied by the shell model for nucleons. For some 
nuclei, such as Be8, C12, O16, Ne20, Mg24, etc., an alpha particle cluster model applies and 
one finds, among the usual shell model states of these nuclei, intruder states (they are 
called “intruder” because in the shell model, which is all encompassing, one needs much 
higher configurations to describe such alpha-cluster states which then intrude the energy 
regime of the normal shell model states from the higher energy of these configurations). 
For O16 these alpha particle cluster states might pertain either to tetrahedral clusters or to 
a linear chain of alpha particles. 

Although much is known about nuclear structure for a considerable distance above the 
ground state, eventually the individual nuclear energy levels get to be so numerous and so 
complicated that we have true nuclear quantum chaos. In the next subsection we discuss 
more systematically how the single-particle strength is distributed even at these higher 
energies.  

5.2 The Distribution of Single-Particle Strength 

If we look at low-energy neutron resonances in heavy nuclei, as in Fig.5, there are 
thousands of levels of each spin and parity per MeV. Correspondingly the neutron-
reduced widths of individual levels, given in Fig. 6, get to be very much below the sum-
rule limit. We then have a regime in which it seems hopeless that any nuclear model 
could ever predict the properties of individual states. This is nuclear quantum chaos. The 
individual reduced-width amplitudes are equally likely to be positive or negative and, 
assuming them to be thus random, the reduced widths themselves have a Gaussian (called 
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Porter-Thomas) distribution about their mean value. The spacing of levels of the same 
spin and parity is not quite random – as one might expect from the random matrix 
elements involved – but rather still obey some powerful mathematical theorems first 
enunciated by Neumann and Wigner18. These theorems pertain to the so-called “no-
crossing” phenomenon for the eigenvalues of a random matrix. Because of them the 
probability of zero spacing between levels is zero – there is level repulsion. The Wigner 
level spacing law for this purpose is a touchstone for a cult devoted to nuclear quantum 
chaos. This cult meets frequently although its direct relevance to physics does not appear 
to be very profound. Chaos exists and does need to be generally understood but apart 
from this it does not appear to contribute greatly to our understanding of the physics of 
the nucleus. 

 

Fig. 6. The early data (<1958; taken from Ref. C) for reduced widths for nucleon emission as a function of 
atomic weight.  The units of the reduced width are those which were the fashion of the time (differing from 
those of the present article by a factor of a, where a is the nuclear radius. Similarly the sum rule limit is (h2/ 
ma). The plot contains 730 individual reduced widths obtained from resonance analysis. The small value of 
the reduced widths for large A is clearly evident as is the wide distribution (Porter-Thomas) of the reduced 
widths about their mean value. It is from the average of such data, and from the mean level spacing, that 
one obtains the strength functions of Fig. 7 and Fig. 8. 
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It is the average reduced width divided by the average level spacing – called the nuclear 
strength function – which survives, even in the regime of nuclear quantum chaos. The 
resulting single-particle resonances of average cross sections (averaged over closely-
spaced resonances) is described phenomenologically by the optical model. We describe 
now the basis of the optical model in R-matrix theory and in so doing we also elucidate 
the single-particle resonances discussed in the previous subsection pertaining to nuclear 
spectroscopy.   

Consider again the resonant states of the compound nucleus as defined by Eqn. (59) and 
Eqn. (60). We used those resonant states, Xλ, to decompose the full wave function of the 
full Hamiltonian in Eqn. (61). Here we now define a single-particle Hamiltonian whose 
wave functions can be used to decompose the resonant states, Xλ. This single-particle 
Hamiltonian is obtained from the full Hamiltonian of Eqn. (59) by splitting it into two 
parts: 

  (94) 
i=1 i=1

A
j=i+1

A A
i ij 0H=Σ T +Σ Σ v = H +HR

A-1
A

where H0 is the single-particle Hamiltonian and  HR  is the residual interaction. In 
Eqn. (94) the full Hamiltonian is a sum of kinetic energy terms and two-body interactions 
between all of the nucleons. Ignoring anti-symmetry, we make the split of the 
Hamiltonian in the following way: 

  (95) A A-1 A-1
0 i=1 i i=1 j=i+1 ij AH =Σ T +Σ Σ v +V

  (96) R j=1 AjH =Σ v - V

where VA is a real single-particle potential of the kind envisaged in Section 2. Thus H0 
contains the full Hamiltonian for all of the A-1 target nucleons but only a potential well 
for the nucleon A. The internal states generated by the Hamiltonian H0 can be written as 
products of the target nucleus wave function, plus the spin and angular parts of the wave 
function for nucleon A, times the radial wave function, u, for the nucleon A. If we add a 
boundary condition (cf. Eqn. (31)) at the matching radius for the nucleon A, such as: 

 ( ) / |/ r aA A ur du d r =⎡ ⎤ b=⎣ ⎦  (97) 

where b is a real number (best chosen as the “natural” boundary condition number 
Eqn. (51)) then the wave functions u are single-particle wave functions, up, for which the 
subscript gives the principle quantum number and the angular momentum of the state. 
We can then write the internal wave functions, which are eigenfunctions of H0, as:  

 0 c p cp c pH U E uψ ψ=  (98) 

for which the energy, Ecp , is the sum of the single-particle energy and the energy of the 
target nucleus. In the context of the full nuclear problem it is such states, which one can 
refer to as single-particle states especially when the target nucleus is in its ground state. 
They allow the target to be in any state of excitation. 
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These true single-particle states are not, in general, the resonant states, Xλ, but they form 
a complete set of states in terms of which the actual resonances can be expanded: 

 , ;c p cp c pX Cλ λ uψ=Σ  (99) 

where c runs over all of the channels for nucleon emission. Since all of the states are 
properly normalized we have a real orthogonal transformation for which: 

 ; ;cp c p cc ppC Cλ λ λ δ δ′ ′ ′ ′  (100) Σ =

and 

 , ; ;c p cp cpC Cλ λ λλδ′ ′Σ =  (101) 

In the transformation Eqn. (99), the expansion coefficients, Cλ;cp, are precisely the square 
roots of the spectroscopic factors, Sλc, in Eqn. (91). Then Eqn. (100) clearly shows us that 
the sum of all of the spectroscopic factors for all resonances is unity. The single-particle 
reduced width is spread among the resonances but retains its sum-rule value. In fact Eqn. 
(100) is the sum-rule, which provides the name for the sum-rule limit. 

This is also the language of the R-matrix. The R-matrix reduced widths are: 

 ( ) ( ) 22 2
;/ 2 p p cpcc c u Cama κλγ ⎡ ⎤Σ= ⎣ ⎦h  (102) 

If the vestiges of the shell model remain, even in the energy regime of nuclear quantum 
chaos, then a single value of the principal quantum number, p, will dominate the sum of 
Eqn. (102). Therefore we can drop the sum and write: 

 ( ) ( )2 22
;/ 2

c

2
p cpcc u Cama

λ λγ = h  (103) 

If the potential, VA, is a square-well then this reduces to: 

 ( )
;

2 2 2/
c c Cma

λ
γ = h

2
cpλ

 (104) 

which clearly displays the single-particle reduced width and the spectroscopic factor. Of 
course if the average potential is not a square-well we might want to add the reflection 
factor to Eqn. (104) as we did in Eqn. (92). 

When we deal with regime of nuclear quantum chaos we are interested in the strength 
function, s(E), which is: 

 ( ) ( ) ( )
122 2

; / /cp p ps C D E E WWE λ π
−

⎡ ⎤=< > = Σ − +⎣ ⎦  (105) 

where D is the average spacing of the resonances and W is a “spreading width” which 
gives a measure of the energy interval into which the single-particle strength is spread 
among the compound states. The angular brackets around the spectroscopic factor 
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indicate that it is averaged over the resonances. Typically the spreading width is several 
MeV (or more if we are dealing, instead with cluster states, etc.). In the nuclear quantum 
chaos regime, such as that for neutron resonances in heavy nuclei, one can average the 
cross sections over resonances to extract the strength function. The data for the s-wave 
neutron strength function is shown in Fig. 7 and Fig. 8. The data clearly display the 3s 
and 4s neutron single-particle resonances, but the peaks of the strength function are split 
by deformations and other physics. The average cross sections of resonance reactions, 
such as those of Fig. 5 are also reasonably described by the nuclear optical model. 

In the nuclear optical model it is assumed that the cross sections averaged over 
resonances can be described by a potential well, which contains both a real and an 
imaginary part. 

 0AV V iW= +  (106) 

 
Fig. 7. The early neutron strength function data (<1958) for s-wave neutrons as a function of the atomic 
weight, A. Also shown are the optical model prediction for the strength function and the “black nucleus” 
prediction.   
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Fig. 8. A more recent plot of the data for the s-wave neutron strength function and the predictions of a 
spherical and deformed optical potential.    

A description of the cross sections of the optical model and of the average over 
resonances of the R-matrix cross sections (the Statistical Theory of Nuclear Reactions13) 
is beyond the scope of these lectures. We point out, however, that a minor miracle occurs 
in the comparison of the optical model results with those of the statistical theory. The 
result for the optical model is identical to those for the statistical theory if we use the 
same W in both. That is, the spreading width of the strength function is the same as the 
imaginary part of the optical potential. Then fits to many cross sections (especially, in the 
early 1950’s, Wisconsin data on neutron cross sections) using the optical model yielded 
the imaginary part of the optical potential (about 1 MeV for low energy neutrons) and 
therefore much information about spreading widths.  

The results from the optical model were essential in establishing the validity of the 
nuclear shell model. The small value of the imaginary part of the potential meant that a 
nucleon was able to travel a distance greater than the nuclear radius before the residual 
interaction destroyed the single-particle motion. At the time it became a crucial problem 
to understand the origin of the small spreading width directly from knowledge of the 
nucleon-nucleon interaction. This understanding was not achieved easily. The residual 
interaction is so strong and short range that early estimates suggested that the spreading 
width was likely many tens of MeV and therefore the nucleus should be essentially black 
for nucleons. In fact, it was such early estimates which led the leading physicists, such as 
Wigner, to abandon any hopes for the shell model in the 1930’s. It wasn’t until the 
evidence from ground-state properties overwhelmingly pointed to the validity of the shell 
model, in about 1950, that the problem of the calculation of the spreading width from the 
residual interaction was revisited and it was found that the Pauli Principle was 
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responsible for reducing the predicted spreading width from about 50 MeV to only 
several MeV as required for the success of the shell model. This was a very important 
problem at the time. 

Let me close these lectures with a personal anecdote about this important problem. At 
MIT, Weisskopf asked his graduate student, Murray Gell-Mann, to tackle this problem in 
1952. This formed Gell-Mann’s PhD thesis a year later but the attempt was not very 
successful. As Gell-Mann’s biographer19 says: “later Wigner did it better”. This was, in 
fact, an important part of my own PhD thesis at Princeton in 1955. Wigner had me use a 
method he had developed earlier for electron correlations in metals to estimate the 
spreading width. I did so, and in my thesis the result found was a disappointing 50 MeV. 
Using a different method Tony Lane also found this large value for the spreading width 
in 1955. We decided that both of us would publish separate abstracts – at a Mexico City 
meeting of the APS that summer – giving this disappointing result. I obtained my PhD 
thesis but fortunately, a few months later, before writing a paper20 on the result, I found 
out that all of us had treated the effects of the Pauli Principle incorrectly and that when 
the correct calculation was made one obtained several MeV, as wanted, for the spreading 
width. By that time I was a postdoctoral fellow working with Rudolf Peierls in 
Birmingham. Wigner was pleased that nature had turned out to be friendly to the shell 
model. 
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