CEX and the City

Charge-Exchange Experiments using (t,3He) at the NSCL

JINA FRONTIERS 2005 8/22/2005

The following graduate school preview has been approved for the Physics Grad audience.

Rated PGThe following talk containsunnecessary double entendres and implicitsexual references that may offend tenderears. Student supervision is advised.

CEX and the City *Outline*

• Motivating Gamow-Teller strengths B(GT) from charge-exchange

- (t,³He): Experimental considerations for Charge-Exchange at the NSCL
- A recent experiment

Supernovae

JINA FRONTIERS 2005

Relevance in Astrophysics

JINA FRONTIERS 2005

Gamow-Teller Strengths: Modeling SNe

Weak Interactions

Important in shock wave propagation?

Cooling through sweating neutrinos?

Reduce densities in core?

e- Capture Rates

Complex relationship with pressure, Y_e, entropy, SN dynamics, deleptonization.

Late stage burning \rightarrow Y_e Y_e² \rightarrow Chandrasekhar limit

Sensitivity

Content and extent of nuclear networks changes output of SN models

The Birds and the B(GT)s

$$B(GT_{+}) = \sum_{i,f} \frac{n_{i}^{p} n_{f}^{h}}{(2 j_{i} + 1)(2 j_{f} + 1)} \left| \left\langle f \left| \vec{\sigma} \tau_{+} \right| i \right\rangle \right|^{2}$$

$$\frac{d\sigma}{d\Omega}(q = 0) = \left[\frac{\mu}{2\pi\hbar} \right]^{2} \frac{k_{f}}{k_{i}} N_{D} \left| V_{\sigma\tau} \right|^{2} \left\langle f \left| \sum_{k} \sigma_{k} \tau_{k} \right| i \right\rangle \right|^{2}$$

$$AZ \quad A+1Z$$

$$\frac{d\sigma}{d\Omega}(q = 0) = KN_{D} \left| J_{\sigma\tau} \right|^{2} B(GT)$$

Resources for B(GT)s

- β decay data: only g.s. to low E_x , limited nuclei!
- CEX measurements
- Calculations remainder of input in reaction networks

Mass	B(GT) from Theory	Mass	SN Phase
14-40	full SM (sd-shell)	<65	Pre-Collapse
40-80	large scale SM	>65	Peri-, Post-Collapse
>80	upper lim. B(GT)		

JINA FRONTIERS 2005

Meredith Howard

8/22/2005

The Birds and the B(GT)s

$$B(GT_{+}) = \sum_{i,f} \frac{n_{i}^{p} n_{f}^{h}}{(2 j_{i} + 1)(2 j_{f} + 1)} \left| \left\langle f | \overline{\sigma} \tau_{+} | i \right\rangle \right|^{2}$$

$$\frac{d\sigma}{d\Omega} (q = 0) = \left[\frac{\mu}{2\pi\hbar} \right]^{2} \frac{k_{f}}{k_{i}} N_{D} |V_{\sigma\tau}|^{2} \left| \left\langle f | \sum_{k} \sigma_{k} \tau_{k} | i \right\rangle \right|^{2}$$

$$AZ \quad A+1Z$$

$$\frac{d\sigma}{d\Omega} (q = 0) = KN_{D} |J_{\sigma\tau}|^{2} B(GT)$$

Resources for B(GT)s

- β decay data: only g.s. to low E_x , limited nuclei!
- CEX measurements
- Calculations remainder of input in reaction networks

Mass	B(GT) from Theory	Mass	SN Phase
14-40	full SM (sd-shell)	<65	Pre-Collapse
40-80	large scale SM	>65	Peri-, Post-Collapse
>80	upper lim. B(GT)		

JINA FRONTIERS 2005

Meredith Howard

8/22/2005

Picking Your Battles: ⁶³Cu, ⁹⁴Mo

63Cu Not included in previous SN reaction networks. Relevant in *pre-collapse* type II and type Ia SNe.

94Mo Higher mass important in *post-(core-)collapse* SNe. Tests calculations with different large model spaces. (Some calculations overpredict strengths.)

Triton Production at NSCL

JINA FRONTIERS 2005

Experimental Setup

Current (t,³He) Experiment

TARGETS

¹²C: calibrate beam intensity
→ norm. σ
²⁴Mg: normalize B(GT)
⁶³Cu: First measurement
⁹⁴Mo: First measurement

E resolution ~ 200 keV *Now in analysis.*

JINA FRONTIERS 2005

Collaborators

Ed Smith, Diane Reitzner

Remco Zegers, Arthur Cole, Wes Hitt,D. Bazin, S. Austin, M. Famiano, A.Gade, D. Galaviz, W. Martinez, M.Matos, H. Schatz, B. Sherrill, Y.Shimbara, C. Simenel, A. Stolz

TRIUMF: B. Davids

Saha INP: C. Samanta

JINA FRONTIERS 2005

Next Episode of CEX and the City...

More (t,3He)

Experiment schedule for Fall 2005: 2 new targets (*Thesis: G.W. Hitt*)

B(GT) and systematic study of (t,3He) probe

New Probes

- Inverse kinematics
- Unstable nuclei At RIA?
- Approved experiment for (7Li,7Be*) in inverse kinematics at NSCL