Breakout from the hot-CNO Cycle via the ¹⁸Ne(α,p)²¹Na reaction

Lou Jisonna, Northwestern University

Motivation: astrophysical and previous experiments
How we do it
Preliminary results and what's next

X-ray Burst Scenario Model

Neutron stars:
 $1.4 M_{o}$, 10 km radius
 $\rho \sim 10^{14}$ g/cm³Donor Star
(MS or RG)Neutron Star or White Dwarf

Accretion Disk

Typical systems: accretion rate 10⁻⁸-10⁻¹⁰ M_o/yr (0.5-50 kg/s/cm2) orbital periods 0.01-100 days orbital separations 0.001-1 AU

The CNO-cycles & Breakout reactions

Previous studies of ¹⁸Ne(α,p)²¹Na

W. Bradfield et al.(PRC,59,3402,1999) D.Groombridge et al. (PRC 66,055802,2002)

•Two measurements disagree

•The α -widths exhaust the Wigner limit

•The levels are not in the Gamow window

Lab Measurement via time inverse reactionα(18Ne,21Na)pp(21Na,18Ne)α

 $^{22}Mg_{12}$

First we need a beam! ATLAS

"Ludwig" Detectors

detection efficiency > ~60%

Kinematic calculations/data Life is easy with calibration reaction: p(²¹Ne,¹⁸F)α

ELUDEIC Sum 79,460 Peak 629 Scale Log

Q-value spectrum: Not so easy with ²¹Na

¹⁸Ne(α,p)²¹Na cross sections

*Lowest energy point was taken over a period of 3 days with a beam intensity of $\sim 5 \times 10^5$ pps on target, with an upper limit for $\sigma \sim \text{few } \mu \text{b}$.

Stellar Reaction Rates: *Preliminary Results

Summary/Outlook for ¹⁸Ne(α ,p)²¹Na

- Direct comparison at one energy, where only the ground state contributes reveals a smaller cross-section than previous measurements (by a factor of ~50)
- Extended measurement to astrophysical energy regime, preliminary results for reaction rate are in good agreement with theoretical models from NON-SMOKER and Görres, et al.

Next: Determine contributions from elastic and inelastic scattering in both ²¹Ne and ²¹Na systems and extract Γ_p and $\Gamma_{p'}$.

Thank You/Acknowledgements

Advisor: <u>R.E. Segel¹</u>

Collaborators: <u>K.E. Rehm²</u>, <u>C.L. Jiang²</u>, <u>A.H. Wuosmaa³</u>, R.V.F. Janssens², J.P. Schiffer², R.C. Pardo², E.F. Moore², J. Greene², <u>D. Henderson²</u>, <u>M. Paul⁴</u>, <u>A. Chen⁵</u>, <u>S. Sinha²</u>, X.D. Tang², others...

¹Northwestern University, ²Argonne National Laboratory, ³Western Michigan University, ⁴Hebrew University, ⁵McMaster University

In-Flight Secondary Beam Production at ATLAS "In-Flight"

