The ¹⁸F (α ,p)²¹Ne reaction: neutron source for r-process in supernovae

H.-Y. Lee, M. Beard, M. Couder, J. Görres, P.J. LeBlanc, S. O'Brien, A. Palumbo,
E. Stech, E. Strandberg, W. Tan, C. Ugalde, M. Wiescher
Department of Physics, University of Notre Dame, Indiana, USA

H.-W. Becker

Dynamitron Tandem Laboratory, Ruhr-Universitat Bochum, Germany

C. Angulo

CRC, Universite de Louvain la Neuve, Belgium

A possible alternative site to the r-process?

J.Cowan et al. The 10th workshop on Nuclear Astrophysics (2000) 64

- . The main r-process: $A \ge 130 \sim 140$
- . The weak r-process: $A \le 130 \sim 140$

Why ¹⁸F(α,p)²¹Ne in supernova shock front?

The possible neutron sources:

a. ${}^{14}N(\alpha, \gamma){}^{18}F(\beta^+, v){}^{18}O(\alpha, \gamma){}^{22}Ne(\alpha, n){}^{25}Mg$ b. ${}^{14}N(\alpha, \gamma){}^{18}F(\beta^+, v){}^{18}O(\alpha, n){}^{21}Ne(\alpha, n){}^{24}Mg$ c. ${}^{18}F(\alpha, p){}^{21}Ne(\alpha, n){}^{24}Mg$

★ At the low temperature (up to T₉=0.4): ${}^{18}F(β^+, v){}^{18}O$ is dominant. ★ At the high temperature : ${}^{18}F(α,p){}^{21}Ne$ reaction is more favored.

As the stage of r-process, the explosive helium burning is valid during the supernova explosion($T_9 \sim 1$). But the reaction rate is not yet determined experimentally.

Nuclear physics aspect

Previous measurement of ²¹Ne(p,α)¹⁸F

In 1987, U.Giesen(Münster Univ.) measured the cross section with gas target by
 [1] the α-spectroscopy using ΔE-E detector (SSB) at Ep=3.2~4.05MeV
 [2] the activation method using Nal detector

²¹Ne(p,α)¹⁸F by Activation Method at ND

Advantages of activation method:

- increase the sensitivity
- determine total cross section independent of angular distributions
- at these low proton energies, no other open reaction channel, but ¹⁸O(p,n) ¹⁸F
- higher beam current
- better peak-to-background ratio

Scanning Electron Microscope(SEM) for target

Before implantation: Au/Cu backing

²¹Ne (@400+150keV), Q=0.24C implanted: Au/Cu backing

target test ²¹Ne(p, γ) at E_p=272keV

Surface cleaning to remove oxygen

A. Test different chemicals with activation method with KN

:bombarding proton(Ep=3MeV) for 4hours, then counting ¹⁸F. due to ¹⁸O(p,n)

- [1] Blank Au/Cu
- [2] Implanted target by ²⁰Ne
- [3] Blank, after rinsing with 99.7% acetone
- [4] Blank, after baking with heat gun for 20min.

B. Test with Deuteron-Induced γ -ray Emission(DIGE) with FN

:measuring 871keV, which is transition from 1^{st} excited to ground state of ${}^{16}O(d,p\gamma)$ ${}^{17}O$ at Ed=2MeV

- [1] Blank Ta
- [2] Blank Au/Cu
- [3] Blank, after dipping in 2% HF* for 1min and rinsing with DI water
- [4] Blank, after [3] and baking for 10min above 100°C
- [5] Blank, after [4] and baking for 20min above 100°C
- [6] Blank, after dipping in 2% HF for 2min, rinsing with
- DI water, Acetone, Alcohol under Ar gas flushing [7] Blank, after [6] and baking for 10mn above 100°C
- [8] Blank, after [7] and baking for 20min above 100°C

*:Reference to RCA cleaning procedure for wafers

Activation with FN

- *Energy range: 3MeV ~ 4MeV
- *Beam current : 1.7 μA ~ 4.2 μA

Activation with KN

- *Energy range: 2.5MeV ~ 3MeV
- *Beam current : 16 μA \sim 26 μA

Preliminary data

*Gamow Energy range : 1.24±0.38 MeV at T9~1K for $^{18}F(\alpha,p)^{21}Ne$

*Lab Energy: 3.12±0.40 MeV

Radioactive beam of ¹⁸F at CRC in

Belgium

Experimental Setup of ¹⁸F(\alpha,p)²¹Ne at CRC

target

Gas cell: 8am in length 6cm in diameter He,250mbar

E_{lab}=23MeV I=5X10⁶ pps

ΔE

entrance foil: **Ni**, 2µ*m*

exit foil: **Ni**, 6µ*m*

Segmented SSD: 16 annular strips X 4 quadrants Si, 45µ*m*

Louvain-Edinburgh **Detector Array:** 16 annular strips X 8 sectors **Si, 300**µ*m*

The helium-driven r-process in supernovae(II)

K. Kifonidis et al., ApJ 531 (2000) L123-126